Developer session
At the Open Source Conference 2021
5G, IoT and Edge computing

The O-RAN Alliance and the ORAN-SC Project

thoralf.czichy@nokia.com
PTL, near-RT RIC

Jul-03-2021
The O-RAN alliance was formed to increase competition
RAN openness, hardware vs software separation, programmability

Key Objectives:
- Bring Cloud Scale Economies to RAN
- Bring Agility to RAN

Key Principles:
- Lead the industry towards open, interoperable interfaces, RAN virtualization, and big data enabled RAN intelligence
- Maximize the use of common-off-the-shelf hardware and minimizing proprietary hardware
- Specify APIs and interfaces, driving standards to adopt them as appropriate, and exploring open source where appropriate

Source: https://www.o-ran.org/membership
The working groups of the O-RAN alliance

1. Non-real-time RIC and A1
2. Near-real-time RIC and E2AP plus E2SM (service models) for RC, KPM, NI
3. Open Fronthaul eCPRI 7.2x split
4. Open F1/W1/E1/X2/Xn (re-use of 3GPP specs)
5. Cloudification and Orchestration (O1 (3GPP reuse), O2)
6. Stack Reference Design
7. White-Box hardware
8. Open X-haul Transport
9. Use cases & overall architecture
O-RAN-SC – The O-RAN software community

Est. April 2019

- Project by the O-RAN Alliance and the Linux Foundation (LF)
- Open-source software aligned with the architecture specified by the O-RAN alliance
- Re-using Series of LF Projects, LLC (common “master LLC”, but separate divisions with limited liabilities).
- LF also provides project infrastructure

>20 companies

- Source code contributions from >20 companies
- 92% of the commits by the top 10 contributing companies
- License: Apache 2.0

4 releases

- A release every 6 months (in July and December):
 - Amber (Nov-2019)
 - Bronze (Jun-2020)
 - Cherry (Dec-2020)
 - Dawn (Jul-2021)
 - E ...
 - F ...
- https://wiki.o-ran-sc.org/display/REL/Releases

Tue + Wed

- Day-to-day management via the TOC (Technical oversight committee)
- Weekly meetings on Wednesdays, 5:30pm IST
- https://wiki.o-ran-sc.org/display/TOC
- Subprojects have own meeting practice
- For example, near-RT RIC has fortnightly meetings on Tuesdays, 6:30pm IST
- https://wiki.o-ran-sc.org/display/RICP/Project+meetings

SCP

- The O-RAN Specification Code Project has separate charter, but delegates administration to the O-RAN-SC TOC
- Shares infrastructure and meetings with O-RAN-SC
- License: O-RAN software license
O-RAN-SC subprojects

<table>
<thead>
<tr>
<th>Project</th>
<th>PTL</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>RICAPP</td>
<td>Matti Hiltunen AT&T</td>
<td>Near-RT RIC XApps</td>
</tr>
<tr>
<td>RIC</td>
<td>Thoralf Czichy Nokia</td>
<td>Near-RT RIC platform</td>
</tr>
<tr>
<td>OCU</td>
<td>Suzy Gu CMCC</td>
<td>Implementing L2, F1, MAC scheduler, RLC</td>
</tr>
<tr>
<td>ODUHIGH</td>
<td>Sachin Srivastava Radisys</td>
<td>Implementing L1, Intel FlexRAN binary used</td>
</tr>
<tr>
<td>ODULOW</td>
<td>Zhimin Yuan Intel</td>
<td>O-RAN Radio Unit</td>
</tr>
<tr>
<td>ORU</td>
<td>TBD NA</td>
<td>No contributions</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Project</th>
<th>PTL</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>OAM</td>
<td>Martin Skorupski HST</td>
<td>yang models, RIC dashboard, O1 reference impl. + O1 client</td>
</tr>
<tr>
<td>SIM</td>
<td>Alex Stancu HST</td>
<td>Simulators for testing O-RAN, e.g., E2AP</td>
</tr>
<tr>
<td>INF</td>
<td>Xiahua Zhang Windriver</td>
<td>Cloud infra for O-RAN (WR)</td>
</tr>
<tr>
<td>INT</td>
<td><open></td>
<td>Integration of O-RAN SC release</td>
</tr>
<tr>
<td>DOC</td>
<td>Weichen Ni CMCC</td>
<td>Documentation to readthedocs.io</td>
</tr>
<tr>
<td>NONRTRIC</td>
<td>John Keeney Ericsson</td>
<td>A1 policy mgr (used by rApps), r-app host, Enrichment data, (ML mgmt)</td>
</tr>
<tr>
<td>SMO</td>
<td>Mahesh Jethanandani Juniper</td>
<td>Integrated SMO & deployment scenarios with ONAP</td>
</tr>
<tr>
<td>SMO</td>
<td>Mahesh Jethanandani Juniper</td>
<td>Integrated SMO & deployment scenarios with ONAP</td>
</tr>
</tbody>
</table>

Description
- **Near-RT RIC XApps**: Implementations for SDAP and PDCP, eGTP-U as binary.
- **Near-RT RIC platform**: Implementing L2, F1, MAC scheduler, RLC.
- **O-RAN Radio Unit**: Implementing L1, Intel FlexRAN binary used.
- **O-RAN Radio Unit**: No contributions.
Licenses of O-RAN-SC and the Specification code project

- The Specification code project shares infrastructure and meetings with O-RAN-SC
- We give repositories within subprojects the choice between contributions under Apache 2 license or under ORAN Software license, also referred to as SCP (Specification code project)
- Documentation to be contributed under Creative Commons Attribution 4.0 (CC BY 4.0)
- The Apache license is a very liberal license in terms of being able to use the source code, e.g., it includes an explicit patent license
 - For example, the Near-RT RIC subproject uses this license.
- ORAN Software license, also referred to as SCP (Specification code project) license is used in the specification code project
 - Details of the license: https://www.o-ran.org/software
 - Used for some xApps and OCU repo. Repos always in folder ”scp” in gerrit
- No contributions without an online-signed contributor license agreement (CLA)
 - https://wiki.o-ran-sc.org/display/ORAN/Signing+Contributor+License+Agreement
- Minor related contribution to asn1c
 - asn1c fork: https://github.com/nokia/asn1c (BSD2/3) - minor adaptations to make it work with the O-RAN ASN.1 specifications.
Committers

Review
- Committers are the primary contact for a component, they review code contributions

INFO.yaml
- Each repo has a set of committers. Check from the repo’s INFO.yaml file (base directory) of the repo.
- Example: https://gerrit.o-ran-sc.org/r/gitweb?p=ric-plt/e2.git;a/blob;f=INFO.yaml

Merge
- Only committers can merge source code to master or maintenance branches
- Only committers can release

New committer?
- Committers can change by majority vote (>=50%) of existing committers.
- Change is automatically notified post-fact to the O-RAN SC TOC (Technical oversight committee)
Tools re-use from Linux Foundation infrastructure

gerrit: All source code + review tool
- https://gerrit.o-ran-sc.org/r/#/admin/projects/

nexus3 as image repository. Release (port 10002) and Staging registry (10004)
- Images in staging registry automatically deleted. Prefer use of release registry instead
- Also includes container base images: https://wiki.o-ran-sc.org/display/ORAN/ORAN+Base+Docker+Images+for+CI+Builds

packagecloud.io for binary artifacts, such as RPM and debian packages.
- Master and staging used during development
- Packaging https://wiki.o-ran-sc.org/display/ORAN/Package+Libraries+for+Linux+Distributions+with+CMake
- Publishing: https://wiki.o-ran-sc.org/display/ORAN/Binary+Repositories+at+PackageCloud.io

NexusIQ (hosted by LF) for license checks
- https://nexus-iq.wl.linuxfoundation.org (access limited) // Right now only A1 mediator. Checks done at end of release manually.

sonarcloud.io: static code checking and code coverage (via tests)
- All repos: https://sonarcloud.io/organizations/o-ran-sc/projects
- We aim for 80% code coverage

readthedocs.io: automatically generated documentation
- Results: https://docs.o-ran-sc.org/en/latest/projects.html#near-realtime-ran-intelligent-controller-ric
- Instructions: https://wiki.o-ran-sc.org/display/ORAN/Configure+Repo+for+Documentation

Testing
- Robot framework used in test cases of E2 manager, routing manager and integration test
- Unit tests: cgreen, gtest, ...

More details
https://wiki.o-ran-sc.org/display/ORAN/O-RAN+Developer%27s+Guide+to+CI+Resources+and+Processes+at+the+LF
What is the near-RT RIC: architecture and key requirements

RAN Intelligent Controller

Use cases
- Network Intelligence
- Policy Enforcement
- Handover Management
- Resource Control
- Load Balancing
- Radio-Link Management
- Advanced SON
- RAN Slicing

Network Intelligence
- Possibly co-localized with CU
- Managing hundreds of DU’s
- Host 3rd Party apps
- Empowered with AI/ML
- Near-RT capabilities
- Role in network slicing.

** EMS functions**
- Orchestration
- Inventory
- Telemetry
- RAN analytics (non-RT RIC)
- Policy
- Control

Near-RT RAN Intelligent Controller
- Radio Connection Optimization (xApps)
- RRM optimization (xApps)
- Mobility optimization (xApps)
- Slicing optim. (xApps)
- 3rd party Applications

Container platform (Akraino REC, WR)

Real-time
- E2

Multi-RAT
- CU-CP
 - RRC
 - PDCP-C
- 3GPP E1
- CU-UP
 - SDAP
 - PDCP-U

NVFI Platform: virtualization & COTS platform

ORAN eCPRI 7.2x

DU
- RLC/MAC/PHY-High
- RRU
- PHY-Low/RF

ORAN Alliance

Public
E2AP functional procedures

SUBSCRIPTION(REPORT)
1. Detect Trigger
2. INDICATION (Subscription, Report)
3. Continue call processing

INDICATION (optional)
1. Detect EVENT
2. Perform Action
3. CONTROL (Event, State)
4. Resume or initiate call processing
5. CONTROL ACK

SUBSCRIPTION(POLICY)
1. Detect Trigger
2. Perform POLICY
3. Continue call processing

SUBSCRIPTION(INSERT)
1. Detect Trigger
2. INDICATION (Subscription, UE, Insert)
3. Halt or suspend call processing
The near-RT RIC platform components
E2 principles

• Amber implemented a pre-spec version of E2AP. Bronze, Cherry and Dawn implement E2AP version v01.00. E2AP version 2.0 is currently in the O-RAN approval cycle.

• The RIC E2AP (Application protocol) specification (ORAN-WG3.E2AP-v01.00.00) defines the general protocol by which the near-RT RIC and RAN (gNB, eNB, CU-{CP,UP}, DU) communicate.

• More detailed E2SM (Service model) specifications define the function-specific protocol that is implemented on top of the E2AP specification. Typical functions are X2AP, F1AP, E1AP, S1AP, NGAP interfaces and RAN internal functions UE, Cell, Node.
 • For example, while the E2 specification defines the concept of event triggers, it is the E2SM for NI that defines the specific triggers in the X2/F1/E1/… function based on matching X2/F1/E1/… AP message type, or X2/F1/E1/… IE.
 • E2SMs are an agreement between xApp and E2SM function on E2 node. To the RIC platform E2SMs are opaque.
 • The implementation of the E2 service model on gNB side requires explicit feature development on O-RAN CU/DU side.