
Suitability of gRPC for RMR Communications
24 June 2010

gRPC Functional Overview

User Callback

User Callback

User Callback

:

:

gRPC

Connection n

Connection 1

Connection 2

Arriving Messages

Features:

Callback oriented

One callback function invoked per connection

Callbacks can execute concurrently

Complete messages are passed; no construction at the receiver

●

●

●

●

1

gRPC Functional Overview (continued)

User Callback

User Callback

User Callback

:

:

gRPC

Connection n

Connection 1

Connection 2

Arriving Messages

There are 4 modes of operation:

Unary RPC

Server Streaming

Client Streaming

Bidirectional Streaming

●

●

●

●

Only bidirectional streaming will work.

2

An RMR-like Setup

Msg

Ring

Receptor
Arriving Messages

gRPC

User Programme

One service/one callback type: Receptor (white)

Concurrently executing Receptors; one for each connection

Single stream for user programme to manage

Extra buffer copy needed to pass message via ring

●

●

●

●

3

RMR/SI95 Comparison

Msg

Ring

RMR
Callback

Arriving Messages

User Programme

SI95

User Thread(s)

RMR Thread

Single RMR thread; one callback (red)

Extra copy NOT needed to pass message via ring

Callback must reconstruct large messages

●

●

●

4

Measurement Point

Msg

Ring

Receptor
Arriving Messages

gRPC

User Programme

Rate and latency measured in the Receptor

Initial experiments with and without ring insertion

Single connection/single Receptor

●

●

●

5

Throughput Results

Transport Messages Elapsed Rate

gRPC 3,000,000 85.4 sec 35K msg/sec

NNG 1,000,000 19.3 sec 52K msg/sec [10]

RMR/NNG 1,000,000 missing 38K msg/sec [10]

RMR/SI95 10,000,000 43.5 sec 230K msg/sec

For gRPC:

Rate for 4K messages averaged about 31K msg/sec

Rate for 20 byte messages averaged about 41K msg/sec

MTU varied between 9K and 1500 bytes without affecting the throughput

●

●

●

6

Latency

 500000

 18803

 707

 26

 0

M
e
s
s
a
g
e
s

L
o
g
 S

c
a
le

.00 .24 .49 .74 .99
Latency (ms)

1000 messages at 100 messages/second.

 500000

 18803

 707

 26

 0

M
e
s
s
a
g
e
s

L
o
g
 S

c
a
le

.00 .24 .49 .74 .99
Latency (ms)

100,000 messages at 850 messages/second.

7

Latency (continued)

 500000

 18803

 707

 26

 0

M
e
s
s
a
g
e
s

L
o
g
 S

c
a
le

.00 .24 .49 .74 .99
Latency (ms)

100,000 messages at 4000 messages/second.

 500000

 18803

 707

 26

 0

M
e
s
s
a
g
e
s

L
o
g
 S

c
a
le

.00 .24 .49 .74 .99
Latency (ms)

100,000 messages at 8500 messages/second.

8

Latency (continued)

 500000

 18803

 707

 26

 0

M
e
s
s
a
g
e
s

L
o
g
 S

c
a
le

.00 .24 .49 .74 .99
Latency (ms)

1,000,000 messages at 39K messages/second.

Minimum: 0.03 ms
Maximum: >1.0 ms
50th percentile: 0.05 ms
95th percentile: 0.09 ms
99th percentile: >1.0 ms

9

RMR Latency; A Quick Comparison

Rcv Rate: ~300K msg/sec
Nagle’s: ON
Pinned: Neither
99.5/99.9: >1.0ms

 500000

 18803

 707

 26

 0

M
e
s
s
a
g
e
s

L
o
g
 S

c
a
le

.00 .24 .49 .74 .99
Latency (ms)

Rcv Rate: ~112K msg/sec
Nagle’s: OFF
Pinned: Neither
99.5/99.9: 0.07 / 0.69 ms

 873030

 28560

 934

 30

 0

M
e
s
s
a
g
e
s

L
o
g
 S

c
a
le

.00 .24 .49 .74 .99
Latency (ms)

Rcv Rate: ~136K msg/sec
Nagle’s: OFF
Pinned: Receiver
99.9: 0.04 ms

 877240

 28664

 936

 30

 0

M
e
s
s
a
g
e
s

L
o
g
 S

c
a
le

.00 .24 .49 .74 .99
Latency (ms)

10

Pinning gRPC Processes

 500000

 18803

 707

 26

 0

M
e
s
s
a
g
e
s

L
o
g
 S

c
a
le

.00 .24 .49 .74 .99
Latency (ms)

Unpinned gRPC Receiver

 500000

 18803

 707

 26

 0

M
e
s
s
a
g
e
s

L
o
g
 S

c
a
le

.00 .24 .49 .74 .99
Latency (ms)

Pinned gRPC Receiver

Reduced 99th percentile latency from 0.87ms to 0.52ms

Did not eliminate the tail

●

●

11

References
[1] "boost C++ Libraries"

https://www.boost.org/doc/libs/1_73_0/doc/html/lockfree/reference.html

[2] "gRPC A high-performance, open source, universal RPC framework"

https://grpc.io/

[3] "About gRPC"

https://grpc.io/about

[4] "gRPC Frequently Asked Questions - FAQ"

https://grpc.io/faq

[5] "gRPC Concepts"

https://grpc.io/concepts

[6] "Protocol Buffers C RPC implementation" source repository

https://github.com/protobuf-c/protobuf-c-rpc

[7] "Nagle’s Algorithm"

https://en.wikipedia.org/wiki/Nagle%27s_algorithm

[8] Nagle, John; "Congestion Control in IP/TCP Internetworks"

RFC 896, January 6, 1984

https://tools.ietf.org/html/rfc896

[9] "NNG Reference Manual"

https://nng.nanomsg.org/man/v1.3.0/index.html

[10] "RMR vs NNG Sending Performance"

https://wiki.o-ran-sc.org/display/RICP/RMR_nng_perf

[11] "Google Protocol Buffers"

https://developers.google.com/protocol-buffers

[12] "RIC Message Routing"

https://docs.o-ran-sc.org/projects/o-ran-sc-ric-plt-lib-rmr/en/latest/index.html#

[13] "RMR Overview Manual Page"

https://docs.o-ran-sc.org/projects/o-ran-sc-ric-plt-lib-rmr/en/latest/rmr.7.html

[14] Trejo, David; "Nagle’s Algorithm"

http://www.davidromerotrejo.com/2016/09/nagles-algorithm.html?m=1

12

