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gRPC Functional Overview
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Features:

Callback oriented

One callback function invoked per connection

Callbacks can execute concurrently

Complete messages are passed; no construction at the receiver
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gRPC Functional Overview (continued)
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There are 4 modes of operation:

Unary RPC

Server Streaming

Client Streaming

Bidirectional Streaming
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Only bidirectional streaming will work.
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An RMR-like Setup
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One service/one callback type: Receptor (white)

Concurrently executing Receptors; one for each connection

Single stream for user programme to manage

Extra buffer copy needed to pass message via ring
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RMR/SI95 Comparison
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Single RMR thread; one callback (red)

Extra copy NOT needed to pass message via ring

Callback must reconstruct large messages
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Measurement Point

Msg

Ring

Receptor
Arriving Messages

gRPC

User Programme

Rate and latency measured in the Receptor

Initial experiments with and without ring insertion

Single connection/single Receptor
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Throughput Results

Transport Messages Elapsed Rate

gRPC 3,000,000 85.4 sec 35K msg/sec

NNG 1,000,000 19.3 sec 52K msg/sec [10]

RMR/NNG 1,000,000 missing 38K msg/sec [10]

RMR/SI95 10,000,000 43.5 sec 230K msg/sec

For gRPC:

Rate for 4K messages averaged about 31K msg/sec

Rate for 20 byte messages averaged about 41K msg/sec

MTU varied between 9K and 1500 bytes without affecting the throughput
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Latency
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100,000 messages at 850 messages/second.
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Latency (continued)
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100,000 messages at 4000 messages/second.
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100,000 messages at 8500 messages/second.
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Latency (continued)
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1,000,000 messages at 39K messages/second.

Minimum: 0.03 ms
Maximum: >1.0 ms
50th percentile: 0.05 ms
95th percentile: 0.09 ms
99th percentile: >1.0 ms
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RMR Latency; A Quick Comparison

Rcv Rate: ~300K msg/sec
Nagle’s: ON
Pinned: Neither
99.5/99.9: >1.0ms
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Rcv Rate: ~112K msg/sec
Nagle’s: OFF
Pinned: Neither
99.5/99.9: 0.07 / 0.69 ms
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Rcv Rate: ~136K msg/sec
Nagle’s: OFF
Pinned: Receiver
99.9: 0.04 ms
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Pinning gRPC Processes
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Unpinned gRPC Receiver
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Pinned gRPC Receiver

Reduced 99th percentile latency from 0.87ms to 0.52ms

Did not eliminate the tail
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