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SUMMARY

It has been suggested that using Google’s RPC (gRPC)[2] as a transport mechanism under the

RIC Message Router (RMR)[12] might be advantageous. Rationale for this considering this shift

includes:

Less maintenance (through the elimination of the SI95 code)

Potentially better performance

●

●

The performance of gRPC, both in terms of throughput (messages per second) and latency, was

evaluated by constructing two simple applications; one each for sending and receiving messages.

Under identical conditions gRPC supports up to a message rate of 40K msg/sec while RMR/SI95

is capable of supporting up to 230K messages per second. Depending on the sending rate the

99th percentile message latency for a gRPC application is between 0.13 ms and 0.40 ms. As a

comparison, the 99th percentile message latency for RMR/SI95 applications is between 0.01 ms

and 0.04 ms while maintaining a message rate better than 100K messages per second.

The remainder of this brief provides an overview of the gRPC capabilities and offerings, and

describes how gRPC might be used to support RMR message based routing. The results of of

experiments designed to compare gRPC performance against RMR, both on top of Nanomsg

Next Generation (NNG)[9] and Socket Interface-95 (SI95), are also presented.

THE gRPC FRAMEWORK

The gRPC framework is billed as "a high-performance, open source universal RPC framework"[2]

supporting four modes of operation. The gRPC about page[3] lists several well known companies

and/or projects using the framework, and lists support for ten different programming languages.

On the surface, the main benefit seems to be the ability to "connect" client and server

applications, written in different programming languages, with very little effort. Under the covers

the claim is that using gRPC is superior to REST because gRPC performs better than a REST

based mechanism[4]. In the world of mobile applications, where many of them have the need to

communicate and/or exchange data with remote applications, this all makes sense. However, the

model of connect, exchange some data, disconnect, is slightly different than the communications

model needed by xAPPs.

Bidirectional Streaming Mode
Of the three communications modes supported by gRPC, only the bidirectional streaming mode

[5] is capable of supporting RMR message based communication. Primarily this is because the

other three modes operate using a more traditional request response paradigm where a response

is always expected. For RMR communications, a response is not always necessary; requiring one

would introduce unnecessary overhead.

Figure 1 illustrates the basic gRPC message and user programme relationship. For each

connection which is accepted, the gRPC library invokes the defined user callback function to

process the message. When the callback function is defined to expect a stream of data,

messages will continue to arrive from the sender (not pictured but assumed to be on the right side

of the related connection arrow) until the sender closes the connection.

If concurrent connections exist, a separate instance of each callback function is involved to

process the inbound messages. Should the callback functions need to access shared data during

the processing of the message(s), then they must implement some type of concurrent access

guards in order to prevent corruption.
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Figure 1:  Overview of a gRPC based application.

Message Wrapping and Services

Google Protocol Buffers[11], also known as protobufs, are used to wrap the data exchanged

between the sending application and the user callback. As with any pair of applications which

exchange data, the need exists for the message format to be agreed upon, and the use of

protobufs is the the Google way, making it no surprise that they were chosen as the base for

gRPC.

Further, the protobuf .proto file(s) which define the message(s) are also used to define the

services which are exposed through gRPC. The extension of the standard protobuf description

adds information which describes the expected messages and the callback function which should

be invoked to parse and react to the message when received.

USING gRPC FOR RMR

RMR is a thin message routing library which provides both high level, message based, routing and

transport insulation to user applications[13]. Routing based on message type allows the routing to

be managed outside of individual applications, and allows for features such as service chaining

without the involvement of the sending application. The transport mechanism insulation allows for

the best underlying transport (e.g. NNG) to be employed without the need to reimplement parts of

each application.

An RMR based application expects messages to be serialised on a single queue regardless of the

number of actual senders. Messages are guaranteed to arrive in order from a single sender while

possibly interleaved with messages from other senders. To implement this API on top of gRPC,

the callback functions illustrated in figure 1 are replaced with a single receptor function as

illustrated in figure 2.

The Receptor

The receptor is a specialised callback which is defined as the service in the protobuf definition
1
.

There will be one executing instance of the receptor for every established connection. The sole

job of the receptor is to read messages from the connection and to queue them onto a message

ring to simulate a single stream to the user programme. This is a similar technique used with the

SI95 interface: messages are buffered by RMR until complete (large messages may require

multiple reads), then placed onto the message ring. In the case of gRPC, large message

construction is handled in the gRPC code, so each read by the receptor yields a complete

message.

An immediately obvious disadvantage to this mechanism, which is not a factor when SI95 is used,

1
 The receptor logic would be implemented within RMR in the same manner as the SI95 callback is implemented.
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Figure 2:  Receptor callbacks feeding a common message ring.

is that an extra buffer copy is necessary to make the message available to the user programme.

The message passed to the receptor is owned by gRPC, and may not be used after the next

buffer is read by the receptor.

Message Encapsulation

With RMR on top of gRPC messages must be encapsulated a second time as the user data is

transmitted through gRPC. Because RMR is both the sender and receiver of the data, there is no

real need to encapsulate the message, outside of the gRPC requirement. To meet the gRPC

requirement for protobuf use, RMR will likely shove its message into the most minimal protobuf

possible: a single bucket of bytes (BOB). The following illustrates a BOB and is the protobuf

definition which was used for the experiments presented in a later section of this brief.

      message Bob {

         int32  nbytes = 1;   // size of the transmitted message

         bytes stuff = 2;     // a variable size data blob

      }

Figure 3:  The protobuf definition for a bucket of bytes (BOB).

One of the features of RMR when run on top of SI95 is the ability for the user programme to

allocate a large message, and to only to transmit the actual bytes used should the resulting

payload be smaller than anticipated. Using a BOB allows the underlying transmission to

encapsulate only the bytes used ensuring that the bytes transmitted are only the bytes of the

payload and no "empty space." Another advantage to using a BOB is that the amount of effort to

encode and decode the RMR message is kept to a minimum.

PERFORMANCE

Performance was measured in messages per second so as to be comparable to the data

collected when RMR was ported onto SI95. Message counts were collected both in the receptor

(white box in figure 2) and in the user programme (green box) with the intent of determining

whether or not the multi-writer message ring
2
 would have any impact.

2
 Two different message rings/queues were implemented. One was from the Boost library[1] and the other was the message ring

code from RMR augmented to support multiple writers. There was no significant difference between the two, and neither had any

impact in the overall throughput.
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Environment

These tests were carried out on the same hardware as the RMR tests. Each sending and

receiving process was executed in a separate container on bare metal. Networking for the

containers was set to host. The sending application constructed small messages and sent them

as quickly as possible (no delay between sends).

Results

For single sender single receiver the average throughput for tests sending at least one million

messages was 34763.80 messages per second (measured at the receptor). Table 1 compares

the throughput averages for gRPC, NNG, RMR with SI95 and RMR with NNG.

Transport Messages Elapsed Rate

gRPC 3,000,000 85.4 sec 35K msg/sec

NNG 1,000,000 19.3 sec 52K msg/sec [10]

RMR/NNG 1,000,000 missing 38K msg/sec [10]

RMR/SI95 10,000,000 43.5 sec 230K msg/sec

Table 1:  Comparison of message rates single sender single receiver.

The gRPC maximum rate of 35K messages per second was observed when sending messages

sized to be comparable to the messages sent for both the RMR/SI95 and NNG trials. When

message size was reduced to less than 20 bytes a maximum rate of just over 40K messages per

second was observed. An expected drop in maximum rate was observed when the message size

was increased to 4K; the maximum rate for these tests was about 31K messages per second.

CPU Utilisation

For a single sender/receiver pair, with the sender transmitting as fast as it can, the sender uses

the expected 100% of a CPU. The receiver, which starts a thread to digest messages from the

queue, allowing the gRPC environment to drive the ingestor callbacks in threads as is needed,

uses about 260% (2.6 CPUs).

This is nearly the same as the CPU used by RMR on top of SI95. An RMR sender uses, as

expected, 100% of a single CPU when sending full out, while the receiver, one RMR thread

reading and queuing data, and the user thread reading from the queue, uses on average 235%

(2.35 CPUs).

Latency

A series of tests were conducted with the single sender single receiver applications to measure

the message travel time (latency) measured from the gRPC send call until it was received in the

receptor callback code. Figures 4 through 11 are histograms of this latency data for representative

tests at various message rates. Table 2 summarises data from representative executions of the

latency experiments.

Several interesting observations can be made when the different executions are compared as a

group. First, at low message rates, figure 4, the mean latency is the highest (.3 ms). As message

rates are increased the mean latency of messages decreases. This suggests that gRPC is not

optimising the underlying TCP connection for low latency, but is attempting to maximise the

overall used bandwidth through Nagle’s algorithm[14,7,8], or something similar.
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Rate

msg/sec Min Max 50% 95% 99%

Total

Sent Figure

100 .21 .38 .30 .36 .38 1,000 4

850 .14 .60 .15 .25 .32 1,000

850 .13 .89 .17 .20 .25 100,000 5

4,000 .07 >1.0 .15 .18 .20 100,000 6

8,000 .05 .73 .09 .12 .15 100,000 7

10,000 .05 .75 .07 .12 .13 100,000 8

39,000 .03 >1.0 .05 .08 .14 1,000,000 9

39,000 .03 >1.0 .05 .08 >1.0 1,000,000 10

39,000 .03 >1.0 .05 .08 .20 1,000,000 11

Table 2:  Latency data; all times are milliseconds.
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Figure 4:  1,000 messages at 100 msg/sec.

 500000

  18803

    707

     26

      0

M
e

s
s
a

g
e

s
 

L
o

g
 S

c
a

le
 

.00 .24 .49 .74 .99
Latency (ms) 

Figure 5:  100,000 messages at 850 msg/sec.
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Figure 6:  100,000 messages at 4000 msg/sec.
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Figure 7:  100,000 messages at 8500 msg/sec.
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Figure 8:  1,000,000 messages at 10,000 msg/sec.
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Figure 9:  1,000,000 messages at 39,000 msg/sec.
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Figure 10:  1,000,000 messages at 39,000 msg/sec.
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Figure 11:  1,000,000 messages at 39,000 msg/sec.

The maximum rate achieved between to gRPC applications was approximately 39K messages

per second. At this rate all of the trials resulted in long tails of messages with latency values

exceeding one millisecond. For one trial, shown in figure 10, the 99th percentile value itself was

over one millisecond.

5



Latency at low rates

To further examine the latency for applications which might send infrequently a small set of tests

were executed to measure latency when sending at rates less than 100 messages per second.

The data from representative executions of these tests are presented in table 3.

Rate

msg/sec Min Max 50% 95% 99%

Total

Sent

100 .20 .54 .31 .37 .39 25,000

10 .20 .73 .32 .37 .40 25,000

1 .18 .78 .27 .33 .38 1,800

Table 3:  Latency data from low message rate trials; all times are milliseconds.

Comparing to RMR Latency

To compare with gRPC, the SI95 portion of RMR was extended to allow latency to be measured

at the same point as it was measured in the receptor; prior to being placed on the message

queue. When untuned the overall message rate between a single sender and receiver was

approximately 300K messages per second, but with latency performance worse than gRPC. This

is illustrated in figure 12.
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Figure 12:  Latency for messages between a single RMR sender/receiver pair at high rate.

Applying some tuning (disabling Nagle’s algorithm) the latency was reduced (a 99.5th percentile

of .07 ms, and 99.9th percentile of .69 ms). The cost of this reduction was throughput which was

reduced to less than half (approximately 112K messages per second). The latency distribution

with this tuning is illustrated in figure 13.
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Figure 13:  Latency when the RMR sender has disabled Nagle’s algorithm.

Further tuning, pinning the receiver processes to individual CPUs, both significantly eliminated the

tail, and increased the throughput to approximately 136K messages per second. The 99.9

percentile was .04 ms. Figure 14 illustrates the a representative latency distribution for this

configuration.
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Figure 14:  Latency when RMR receiver is pinned and RMR sender has disabled Nagle’s algorithm.

The sacrifice of throughput to achieve the lowest possible latency is a well-known networking

trade-off, but this doesn’t need to impact the performance of xAPPs built on top of RMR. To

illustrate, a single sender is able to generate in excess of 250K messages per second when

messages are distributed by RMR across more than one receiver. Figures 15 through 18 show
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the latency distributions for the trials for two different configurations. Figures 15 and 16 show the

distribution for the receivers when the sender did not disable Nagle’s algorithm. The 99.9th

percentile latency for this case was .04 ms.

Figures 17 and 18 show the distribution when Nagle’s algorithm was disabled. 99.9th percentile

latency was further reduced but for this case the throughput was reduced to approximately 50K

messages per second.
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Figure 15:  RMR receiver 1; rate approx. 128K msg/sec.
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Figure 16:  RMR receiver 2; rate approx. 128K msg/sec.
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Figure 17:  RMR receiver 1; rate approx. 50K msg/sec.
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Figure 18:  RMR receiver 2; rate approx. 50K msg/sec.

Table 4 summarises the relationship between throughput, latency, use of Nagle’s algorithm and

CPU pinning. Setting the MTU to 1500 bytes effectively eliminates the impact of Nagle’s

algorithm, but does limit the total throughput.

Rate MTU Nagle Pinned 99% Max

300K 9000 ON neither >1 ms >1 ms

112K 9000 OFF neither .04 ms .82 ms

260K 9000 ON receiver >1 ms >1 ms

136K 9000 OFF receiver .02 ms .07 ms

367K 9000 ON both >1 ms >1 ms

138K 9000 OFF both .02 ms .20 ms

137K 1500 ON both .05 ms .13 ms

137K 1500 OFF both .02 ms .22 ms

Table 4:  Effect of pinning, Nagel’s algorithm and MTU on latency.

Pinning gRPC Processes

Because the effect of pinning the RMR receiver processes had a noticeable impact, the gRPC

experiments at max rate were run both pinned and unpinned. Figures 19 and 20 illustrate the

latency distributions for representative runs of these experiments. Pinning the receive process

had a small effect of reducing the 99th percentile from .87 ms to .52 ms, but did not help to

eliminate the tail.
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Figure 19:  Latency distribution of unpinned gRPC receiver.
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Figure 20:  Latency distribution of pinned gRPC receiver.

OTHER COMPLICATIONS

The gRPC library does not support C. There is a C implementation[6], but this is a third party

implementation which looks dormant and thus its reliability is unknown; using this library would be a

risk. Because RMR is written in C, there would need to be a wrapper layer necessary to allow

RMR to interface with the gRPC C++ library; this is necessary to maintain compatibility with

existing applications that expect RMR to be a C implementation.

FINAL THOUGHTS

While gRPC provides a nice interface for HTTP styled request response communication between

generally unrelated applications, and its claim to be "high speed" is probably valid when

compared to REST-like transaction implementations, it just cannot provide the same throughput

(messages per second) that can be achieved with RMR on top of SI95. Latency, for the most part,

is acceptable, but only for applications which generate messages at a rate above 10,000 per

second, and even for those applications the very long latency tail observed could cause a

significant number of messages to be delayed beyond acceptable limites.

In addition, gRPC is not a replacement for RMR inasmuch as it provides no routing capabilities

requiring the user application to know every endpoint address (IP address or DNS name) that is

required. Using gRPC directly also requires additional application complexity from the perspective

of threading and session management that isn’t required with the "single stream" model provided

by RMR.
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