CII Badge Passing requirements: https://bestpractices.coreinfrastructure.org/en/criteria/0
1. Each OSC project will have “met” answers for 13 requirements about the security of the development process:
0. Basics (13 requirements)
0. Change Control (9 requirements)
0. Quality (6/13 controls)
2. Working build system (3 requirements)
2. New functionality testing (3)
1. Recommended OSC-wide reporting requirements
1. Reporting (8 requirements)
0. the OSC will have to set up a bug reporting process. We have such a team and process in ONAP. We monitor vulnerability reports via Jira (preferred) and email (supported for those who do not have an LF account)
0. Vulnerability reporting link on wiki.onap.org landing page to the ONAP vulnerability reporting process: Reporting Vulnerabilities
1. Recommended “code-specific” requirements for the upcoming release
2. Quality (2)
0. The project MUST use at least one automated test suite that is publicly released as FLOSS (this test suite may be maintained as a separate FLOSS project). [test]
0. The LF has Sonarcloud licenses, although this is not a FLOSS tool, ONAP considers it to meet this requirement.
0. It is SUGGESTED that the test suite cover most (or ideally all) the code branches, input fields, and functionality. [test_most]
1. Suggest that you get Sonarcloud scanning in place for all of the OSC projects and have them start writing tests – to satisfy this requirement. Sonarcloud will allow you to see how much of their code is covered.
2. Security (1/16)
1. The default security mechanisms within the software produced by the project SHOULD NOT depend on cryptographic algorithms or modes with known serious weaknesses (e.g., the SHA-1 cryptographic hash algorithm or the CBC mode in SSH). {N/A allowed} [crypto_weaknesses]
0. This should be straightforward for your projects to implement because most of your security mechanisms are the latest versions of either TLS or SSH and the ciphers can be configured per the (unpublished) STG recommendations.
0. This can also be tested by (1) looking at the version of the package used, and (2) trying to negotiate a broken cipher.


