
RIC Message Router -- RMR
User’s Manual

Original: 30 July 2019
Revised: 13 August 2019

This document, and the source used to generate it, is governed by the following copyright
statement(s).

 Copyright (c) 2019 Nokia
 Copyright (c) 2018-2019 AT&T Intellectual Property.

 Licensed under the Apache License, Version 2.0 (the "License");
 you may not use this file except in compliance with the License.
 You may obtain a copy of the License at

 http://www.apache.org/licenses/LICENSE-2.0

 Unless required by applicable law or agreed to in writing, software
 distributed under the License is distributed on an "AS IS" BASIS,
 WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
 See the License for the specific language governing permissions and
 limitations under the License.

Table Of Contents

OVERVIEW 1
Purpose 1
Message Routing 1

Round Robin Delivery 1
Routing Table Updates 2

Latency And Throughput 2

GENERAL USE 2
Initialisation 2

The RMR Context 2
Wait For Ready 2
Receiving Messages 3

The Message Payload 3
Message Type and Subscription ID 3
Sender Information 3
Transaction ID 3
Trace Information 4

Sending Messages 4
Message Buffer Allocation 4
Populating the Message Buffer 4
Sending a Message Buffer 4

ADVANCED USAGE 5
The Call Function 5

Returning a Response 5
Multi-threaded Calls 5

Wormholes 6

HANDLING FAILURES 6
Failure Notification 6
Application Response 8
RMR Retry Modes 8
Other Failures 8

CONFIGURATION AND CONTROL 9
TCP Ports 9
Host Names 9
Environment Variables 9
Logging 10

APPENDIX A -- QUICK REFERENCE 11
Context Specific Functions 11
Message Buffer Functions 13

APPENDIX B -- MESSAGE BUFFER DETAILS 16
The Structure 16

i

State vs Transport State 16
Field References 16
Actual Transmission 17

APPENDIX C -- GLOSSARY 18

APPENDIX D -- CODE EXAMPLES 20
Sender Sample 20
Receiver Sample 20
Receive and Send Sample 21

INDEX 22

ii

RIC Message Router -- RMR
User’s Manual

OVERVIEW

The RIC Message Router (a.k.a. RMR) is a thin library which provides a latency sensitive
application with the ability to send and receive messages with other RMR based applications.
The library provides the following major features:

Routing and endpoint selection is based on message type.

Application is insulated from the underlying transport mechanism and/or protocols.

Message distribution (round robin or fanout) is selectable by message type.

Route management updates are received and processed asynchronously and without
overt application involvement.

■

■

■

■

Purpose

RMR’s main purpose is to provide an application with the ability to send and receive messages
to/from other peer applications with minimal effort on the application’s part. To achieve this,
RMR manages manages all endpoint information, connections, and routing information
necessary to establish and maintain communication. From the application’s point of view, all that
is required to send a message is to allocate (via RMR) a message buffer, add the payload data,
and set the message type. To receive a message, the application needs only to invoke the
receive function; when a message arrives a message buffer will be returned as the function
result.

Message Routing

Applications are required to place a message type into a message before sending, and may
optionally add a subscription ID when appropriate. The combination of message type, and
subscription ID are refered to as the message key, and is used to match an entry in a routing
table which provides the possible endpoints expecting to receive messages with the matching
key.

Round Robin Delivery
An endpoint from RMR’s perspective is an application to which RMR may establish a connection,
and expect to send messages with one or more defined message keys. Each entry in the route
table consists of one or more endpoint groups, called round robin groups. When a message
matches a specific entry, the entry’s groups are used to select the destination of the message. A
message is sent once to each group, with messages being balanced across the endpoints of a
group via round robin selection. Care should be taken when defining multiple groups for a
message type as there is extra overhead required and thus the overall message latency is
somewhat reduced.

1

Routing Table Updates
Route table information is made available to RMR a static file (loaded once), or by updates sent
from a separate route manager application. If a static table is provided, it is loaded during RMR
initialisation and will remain in use until an external process connects and delivers a route table
update (often referred to as a dynamic update). Dynamic updates are listened for in a separate
process thread and applied automatically; the application does not need to allow for, or trigger,
updates.

Latency And Throughput

While providing insulation from the underlying message transport mechanics, RMR must also do
so in such a manner that message latency and throughput are not impacted. In general, the
RMR induced overhead, incurred due to the process of selecting an endpoint for each message,
is minimal and should not impact the overall latency or throughput of the application. This impact
has been measured with test applications running on the same physical host and the average
latency through RMR for a message was on the order of 0.02 milliseconds.

As an application’s throughput increases, it becomes easy for the application to overrun the
underlying transport mechanism (e.g. NNG), consume all available TCP transmit buffers, or
otherwise find itself in a situation where a send might not immediately complete. RMR offers
different modes which allow the application to manage these states based on the overall needs
of the application. These modes are discussed in the Configuration section of this document.

GENERAL USE

To use, the RMR based application simply needs to initialise the RMR environment, wait for
RMR to have received a routing table (become ready), and then invoke either the send or
receive functions. These steps, and some behind the scenes details, are described in the
following paragraphs.

Initialisation

The RMR function rmr_init() is used to set up the RMR environment and must be called
before messages can be sent or received. One of the few parameters that the application must
communicate to RMR is the port number that will be used as the listen port for new connections.
The port number is passed on the initialisation function call and a TCP listen socket will be
opened with this port. If the port is already in use RMR will report a failure; the application will
need to reinitialise with a different port number, abort, or take some other action appropriate for
the application.

In addition to creating a TCP listen port, RMR will start a process thread which will be
responsible for receiving dynamic updates to the route table. This thread also causes a TCP
listen port to be opened as it is expected that the process which generates route table updates
will connect and send new information when needed. The route table update port is not
supplied by the application, but is supplied via an environment variable as this value is likely
determined by the mechanism which is starting and configuring the application.

The RMR Context
On successful initialisation, a void pointer, often called a handle by some programming
languages, is returned to the application. This is a reference to the RMR control information and
must be passed as the first parameter on most RMR functions calls. RMR refers to this as the
context, or ctx.

Wait For Ready

An application which is only receiving messages does not need to wait for RMR to become ready
after the call to the initialisation function. However, before the application can successfully send a

2

message, RMR must have loaded a route table, and the application must wait for RMR to report
that it has done so. The RMR function rmr_ready() will return the value true (1) when a
complete route table has been loaded and can be used to determine the endpoint for a send
request.

Receiving Messages

The process of receiving is fairly straight forward. The application invokes the RMR
rmr_rcv_msg() function which will block until a message is received. The function returns a
pointer to a message block which provides all of the details about the message. Specifically, the
application has access to the following information either directly or indirectly:

The payload (actual data)

The total payload length in bytes

The number of bytes of the payload which contain valid data

The message type and subscription ID values

The hostname and IP address of the source of the message (the sender)

The transaction ID

Tracing data (if provided)

■

■

■

■

■

■

■

The Message Payload
The message payload contains the raw data that was sent by the peer application. The format
will likely depend on the message type, and is expected to be known by the application. A direct
pointer to the payload is available from the message buffer (see appendix B for specific message
buffer details).

Two payload related length values are also directly available: the total payload length, and the
number of bytes actually filled with data. The used length is set by the caller, and may or not be
an accurate value. The total payload length is determined when the buffer is created for sending,
and is the maximum number of bytes that the application may modify should the buffer be used
to return a response.

Message Type and Subscription ID
The message type and subscription ID are both directly available from the message buffer, and
are the values which were used to by RMR in the sending application to select the endpoint. If
the application resends the message, as opposed to returning the message buffer as a
response, the message number and/or the subscription ID might need to be changed to avoid
potential issues

1
.

Sender Information
The source, or sender information, is indirectly available to the application via the
rmr_get_src() and rmr_get_ip() functions. The former returns a string
containing hostname:port, while the string ip:port is returned by the latter.

Transaction ID
The message buffer contains a fixed length set of bytes which applications can set to track
related messages across the application concept of a transaction. RMR will use the transaction
ID for matching a response message when the rmr_call() function is used to send a
message.

1
 It is entirely possible to design a routing table, and application group, such that the same message type is is left unchanged and

the message is forwarded by an application after updating the payload. This type of behaviour is often referred to as service

chaining, and can be done without any "knowledge" by an application with respect to where the message goes next. Service

chaining is supported by RMR in as much as it allows the message to be resent, but the actual complexities of designing and

implementing service chaining lie with the route table generator process.

3

Trace Information
RMR supports the addition of an optional trace information to any message. The presence and
size is controlled by the application, and can vary from message to message if desired. The
actual contents of the trace information is determined by the application; RMR provides only the
means to set, extract, and obtain a direct reference to the trace bytes. The trace data field in a
message buffer is discussed in greater detail in the Trace Data section.

Sending Messages

Sending requires only slightly more work on the part of the application than receiving a
message. The application must allocate an RMR message buffer, populate the message payload
with data, set the message type and length, and optionally set the subscription ID. Information
such as the source IP address, hostname, and port are automatically added to the message
buffer by RMR, so there is no need for the application to worry about these.

Message Buffer Allocation
The function rmr_msg_alloc() allocates a zero copy buffer and returns a pointer to the
RMR rmr_mbuf_t structure. The message buffer provides direct access to the payload,
length, message type and subscription ID fields. The buffer must be preallocated in order to
allow the underlying transport mechanism to allocate the payload space from it’s internal
memory pool; this eliminates multiple copies as the message is sent, and thus is more efficient.

If a message buffer has been received, and the application wishes to use the buffer to send a
response, or to forward the buffer to another application, a new buffer does not need to be
allocated. The application may set the necessary information (message type, etc.), and adjust
the payload, as is necessary and then pass the message buffer to rmr_send_msg() or
rmr_rts_msg() to be sent or returned to the sender.

Populating the Message Buffer
The application has direct access to several of the message buffer fields, and should set them
appropriately.

len This is the number of bytes that the application placed into the payload.
Setting length to 0 is allowed, and length may be less than the allocated
payload size.

mtype The message type that RMR will use to determine the endpoint used as
the target of the send.

sub_id The subscription ID if the message is to be routed based on the
combination of message type and subscription ID. If no subscription ID
is valid for the message, the application should set the field with the
RMR constant RMR_VOID_SUBID.

payload The application should obtain the reference (pointer) to the payload
from the message buffer and place any data into the payload. The
application is responsible for ensuring that the maximum payload size is
not exceeded. The application may obtain the maximum size via the
rmr_payload_size() function.

trace data Optionally, the application may add trace information to the message
buffer.

Sending a Message Buffer
Once the application has populated the necessary bits of a message, it may be sent by passing
the buffer to the rmr_send_msg() function. This function will select an endpoint to
receive the message, based on message type and subscription ID, and will pass the message to
the underlying transport mechanism for actual transmission on the connection. (Depending on

4

the underlying transport mechanism, the actual connection to the endpoint may happen at the
time of the first message sent to the endpoint, and thus the latency of the first send might be
longer than expected.)

On success, the send function will return a reference to a message buffer; the status within that
message buffer will indicate what the message buffer contains. When the status is RMR_OK the
reference is to a new message buffer for the application to use for the next send; the payload
size is the same as the payload size allocated for the message that was just sent. This is a
convenience as it eliminates the need for the application to call the message allocation function
at some point in the future, and assumes the application will send many messages which will
require the same payload dimensions.

If the message contains any status other than RMR_OK, then the message could not be sent,
and the reference is to the unsent message buffer. The value of the status will indicate whether
the nature of the failure was transient (RMR_ERR_RETRY) or not. Transient failures are
likely to be successful if the application attempts to send the message at a later time.
Unfortunately, it is impossible for RMR to know the exact transient failure (e.g. connection being
established, or TCP buffer shortage), and thus it is not possible to communicate how long the
application should wait before attempting to resend, if the application wishes to resend the
message. (More discussion with respect to message retries can be found in the Handling
Failures section.)

ADVANCED USAGE

Several forms of usage fall into a more advanced category and are described in the following
sections. These include blocking call, return to sender and wormhole functions.

The Call Function

The RMR function rmr_call() will send a message in the exact same manner as the
rmr_send_msg() function, with the endpoint selection based on the message key. Unlike
the send function, rmr_call() will block and wait for a response from the application that
is selected to receive the message. The matching message is determined by the transaction ID
which the application must place into the message buffer prior to invoking rmr_call().
Similarly, the responding application must ensure that the same transaction ID is placed into the
message buffer before returning its response.

The return from the call is a message buffer with the response message; there is no difference
between a message buffer returned by the receive function and one returned by the &fucnt
function. If a response is not received in a reasonable amount of time, a nil message buffer is
returned to the calling application.

Returning a Response
Because of the nature of RMR’s routing policies, it is generally not possible for an application to
control exactly which endpoint is sent a message. There are cases, such as responding to a
message delivered via rmr_call() that the application must send a message and
guarantee that RMR routes it to an exact destination. To enable this, RMR provides the
rmr_rts_msg(), return to sender, function. Upon receipt of any message, an application
may alter the payload, and if necessary the message type and subscription ID, an pass the
altered message buffer to the rmr_rts_msg() function to return the altered message to
the application which sent it. When this function is used, RMR will examine the message buffer
for the source information and use that to select the connection on which to write the response.

Multi-threaded Calls
The basic call mechanism described above is not thread safe, as it is not possible to guarantee
that a response message is delivered to the correct thread. The RMR function

5

rmr_mt_call() accepts an additional parameter which identifies the calling thread in
order to ensure that the response is delivered properly. In addition, the application must
specifically initialise the multi-threaded call environment by passing the RMRFL_MTCALL flag
as an option to the rmr_init() function

2
.

One advantage of the multi-threaded call capability in RMR is the fact that only the calling
thread is blocked. Messages received which are not responses to the call are continued to be
delivered via normal rmr_rcv_msg() calls.

While the process is blocked waiting for the response, it is entirely possible that asynchronous,
nonmatching, messages will arrive. When this happens, RMR will queues the messages and
return them to the application over the next calls to rmr_rcv_msg().

Wormholes

As was mentioned earlier, the design of RMR is to eliminate the need for an application to know a
specific endpoint, even when a response message is being sent. In some rare cases it may be
necessary for an application to establish a direct connection to an RMR based application rather
than relying on message type and subscription ID based routing. The wormhole functions
provide an application with the ability to create a direct connection and then to send and receive
messages across the connection. The following are the RMR functions which provide wormhole
communications:

rmr_wh_open Open a connection to an endpoint. Name or IP address and port of the
endpoint is supplied. Returns a wormhole ID that the application must
use when sending a direct message.

rmr_wh_send_msg
Sends an RMR message buffer to the connected application. The
message type and subscription ID may be set in the message, but RMR
will ignore both.

rmr_wh_close Closes the direct connection.

HANDLING FAILURES

The vast majority of states reported by RMR are fatal; if encountered during setup or
initialisation, then it is unlikely that any message oriented processing should continue, and when
encountered on a message operation continued operation on that message should be
abandoned. Specifically with regard to message sending, it is very likely that the underlying
transport mechanism will report a soft, or transient, failure which might be successful if the
operation is retried at a later point in time. The paragraphs below discuss the methods that an
application might deal with these soft failures.

Failure Notification

When a soft failure is reported, the returned message buffer returned by the RMR function will be
RMR_ERR_RETRY. These types of failures can occur for various reasons; one of two
reasons is typically the underlying cause:

The session to the targeted recipient (endpoint) is not connected.

The transport mechanism buffer pool is full and cannot accept another buffer.

2
 There is additional overhead to support multi-threaded call as a special listener thread must be used in order to deliver responses

to the proper application thread.

■

■

6

Unfortunately, it is not possible for RMR to determine which of these two cases is occurring, and
equally as unfortunate the time to resolve each is different. The first, no connection, may require
up to a second before a message can be accepted, while a rejection because of buffer shortage
is likely to resolve in less than a millisecond.

Application Response

The action which an application takes when a soft failure is reported ultimately depends on the
nature of the application with respect to factors such as tolerance to extended message latency,
dropped messages, and over all message rate.

RMR Retry Modes

In an effort to reduce the workload of an application developer, RMR has a default retry policy
such that RMR will attempt to retransmit a message up to 1000 times when a soft failure is
reported. These retries generally take less than 1 millisecond (if all 1000 are attempted) and in
most cases eliminates nearly all reported soft failures to the application. When using this mode,
it might allow the application to simply treat all bad return values from a send attempt as
permanent failures.

If an application is so sensitive to any delay in RMR, or the underlying transport mechanism, it is
possible to set RMR to return a failure immediately on any kind of error (permanent failures are
always reported without retry). In this mode, RMR will still set the state in the message buffer to
RMR_ERR_RETRY, but will not make any attempts to resend the message. This zero-retry
policy is enabled by invoking the rmr_set_stimeout() with a value of 0; this can be
done once immediately after rmr_init() is invoked.

Regardless of the retry mode which the application sets, it will ultimately be up to the application
to handle failures by queuing the message internally for resend, retrying immediately, or
dropping the send attempt all together. As stated before, only the application can determine how
to best handle send failures.

Other Failures

RMR will return the state of processing for message based operations (send/receive) as the
status in the message buffer. For non-message operations, state is returned to the caller as the
integer return value for all functions which are not expected to return a pointer (e.g.
rmr_init().) The following are the RMR state constants and a brief description of their
meaning.

RMR_OK state is good; operation finished successfully

RMR_ERR_BADARG argument passed to function was unusable

RMR_ERR_NOENDPT send/call could not find an endpoint based on msg type

RMR_ERR_EMPTY msg received had no payload; attempt to send an empty message

RMR_ERR_NOHDR message didn’t contain a valid header

RMR_ERR_SENDFAILED send failed; errno may contain the transport provider reason

RMR_ERR_CALLFAILED unable to send the message for a call function; errno may contain the transport
provider reason

RMR_ERR_NOWHOPEN no wormholes are open

RMR_ERR_WHID the wormhole id provided was invalid

RMR_ERR_OVERFLOW operation would have busted through a buffer/field size

RMR_ERR_RETRY request (send/call/rts) failed, but caller should retry (EAGAIN for wrappers)

RMR_ERR_RCVFAILED receive failed (hard error)

RMR_ERR_TIMEOUT response message not received in a reasonable amount of time

7

RMR_ERR_UNSET the message hasn’t been populated with a transport buffer

RMR_ERR_TRUNC length in the received buffer is longer than the size of the allocated payload,
received message likely truncated (length set by sender could be wrong, but we
can’t know that)

RMR_ERR_INITFAILED initialisation of something (probably message) failed

RMR_ERR_NOTSUPP the request is not supported, or RMr was not initialised for the request

Depending on the underlying transport mechanism, and the nature of the call that RMR
attempted, the system errno value might reflect additional detail about the failure.
Applications should not rely on errno as some transport mechanisms do not set it with any
consistency.

CONFIGURATION AND CONTROL

With the assumption that most RMR based applications will be executed in a containerised
environment, there are some underlying mechanics which the developer may need to know in
order to properly provide a configuration specification to the container management system. The
following paragraphs briefly discuss these.

TCP Ports

RMR requires two (2) TCP listen ports: one for general application to application
communications and one for route table updates. The general communication port is specified
by the application at the time RMR is initialised. The port used to listen for route table updates is
likely to be a constant port shared by all applications provided they are running in separate
containers. To that end, the port number defaults to 4561, but can be configured with an
environment variable (see later paragraph in this section).

Host Names

RMR is typically host name agnostic. Route table entries may contain endpoints defined either
by host name or IP address. In the container world the concept of a service name might exist,
and likely is different than a host name. RMR’s only requirement with respect to host names is
that a name used on a route table entry must be resolvable via the gethostbyname
system call.

Environment Variables

Several environment variables are recognised by RMR which, in general, are used to define
interfaces and listen ports (e.g. the route table update listen port), or debugging information.
Generally this information is system controlled and thus RMR expects this information to be
defined in the environment rather than provided by the application. The following is a list of the
environment variables which RMR recognises:

RMR_BIND_IF The interface to bind to listen ports to. If not defined 0.0.0.0 (all interfaces) is
assumed.

RMR_RTG_SVC The port RMR will listen on for route manager connections. If not defined 4561 is
used.

RMR_SEED_RT Where RMR expects to find the name of the seed (static) route table. If not defined no
static table is read.

RMR_RTG_ISRAW If the value set to 0, RMR expects the route table manager messages to be
messages with and RMR header. If this is not defined messages are assumed to be
"raw" (without an RMR header.

RMR_VCTL_FILE Provides a file which is used to set the verbose level of the route table collection
thread. The first line of the file is read and expected to contain an integer value to set
the verbose level. The value may be changed at any time and the route table thread
will adjust accordingly.

8

RMR_SRC_NAMEONLY

If the value of this variable is greater than 0, RMR will not permit the IP address to be
sent as the message source. Only the host name will be sent as the source in the
message header.

Logging

RMR does not use any logging libraries; any error or warning messages are written to standard
error. RMR messages are written with one of three prefix strings:

[CRI] The event is of a critical nature and it is unlikely that RMR will continue to
operate correctly if at all. It is almost certain that immediate action will be
needed to resolve the issue.

[ERR] The event is not expected and RMR is not able to handle it. There is a small
chance that continued operation will be negatively impacted. Eventual action
to diagnose and correct the issue will be necessary.

[WRN] The event was not expected by RMR, but can be worked round. Normal
operation will continue, but it is recommended that the cause of the problem
be investigated.

9

APPENDIX A -- QUICK REFERENCE

The prototype for each of the externally available functions which comprise the RMR API is listed
in alphabetical order below. For each prototype a brief description of the function is given. The
developer is encouraged to install the RMR development package which contains the manual
pages. The manual pages completely describe each function in a level of detail consistent with
UNIX man pages.

Context Specific Functions

These functions require that the RMR context (provided as the result of an rmr_init()
call, be passed as the first argument (vctx).

rmr_mbuf_t* rmr_alloc_msg(void* vctx, int size);

This function allocates a zero copy message buffer. The payload portion is allocated from the
underlying transport space such that on send the buffer does not require a second copy. The
size parameter is the size of the payload portion of the buffer; if the recipient of the message is
expected to send a response, this should be large enough to accomodate the response which
will enable the remote application to reuse the message for the response and avoid a costly
reallocation.

rmr_mbuf_t* rmr_call(void* vctx, rmr_mbuf_t* msg);

The call function accepts a message, selects an endpoint to receive the message and sends the
message. RMR will block the return to the application until a matching response is received, or a
timeout period is reached. The transaction ID in the outbound message is used to match a
response, so it is imperative that the application making the response reuse the received
message, or copy the transaction ID to the new message before sending. Messages arriving
which do not match the expected response are queued and will be delivered to the application
on subsequent calls to rmr_rcv_msg().

void rmr_close(void* vctx);

This function terminates all sessions with the underlying transport mechanism. Buffers pending
may or may not be flushed (depending on the underlying mechanism), thus it is recommended
that before using this function the application pause for a second or two to ensure that the
pending transmissions have completed.

int rmr_get_rcvfd(void* vctx);

When the underlying transport mechanism supports this, a file descriptor suitable for use with
the select, poll and epoll system calls is returned. The file descriptor may not be
used for read or write operations; doing so will have unpredictable results.

void* rmr_init(char* proto_port, int max_msg_size, int flags);

This function must be used before all other RMR functions to initialise the environment. The
max_msg_size parameter defines the maximum receive buffer size which will be used if
required by the underlying transport mechanism. The value is also used as the default payload
size if a zero length is given to rmr_alloc_msg().

rmr_mbuf_t* rmr_mt_call(void* vctx, rmr_mbuf_t* mbuf, int call_id, int max_wait);

Similar to the rmr_call() function, the message is sent to an endpoint and a response
message is waited for. This call is thread safe, and while the thread that invokes this function
blocks on the response, it is possible for other application threads to continue to receive
messages via the rmr_rcv_msg() function.

In order to use the multi-threaded call functions, the option to enable threaded receive support
must be set on the call to rmr_init().

10

rmr_mbuf_t* rmr_mtosend_msg(void* vctx, rmr_mbuf_t* msg, int max_to);

This function sends the provided message allowing RMR to retry soft failures for approximately
&ccw milliseconds. When a value of zero (0) is given for the maximum timeout, RMR will not
attempt any retires and will return the state after the first attempt. It is unlikely that a user
application will use this function as it is possible (and recommended) to set the max timeout via
the specific, one time, function call, and then to allow that value to be used as the default when
rmr_send_msg() is invoked.

rmr_mbuf_t* rmr_mt_rcv(void* vctx, rmr_mbuf_t* mbuf, int max_wait);

This function waits for a message to arrive and returns a message buffer with the received
message. The function will timeout after max_wait milliseconds (approximately) if no
message is received.

rmr_mbuf_t* rmr_send_msg(void* vctx, rmr_mbuf_t* msg);

This function accepts a message, selects a destination endpoint using the message type and
subscription ID, and then attempts to send the message to the destination. The function returns a
message buffer to the caller with the state set to indicate the state of the send operation. On
success, the message buffer is a new buffer that the application can "fill in," and send without
the need to overtly allocate a new buffer. On failure, the message buffer is the buffer that the
application attempted to send.

int rmr_init_trace(void* vctx, int size);

This function is used to set the default trace data size. The size defaults to zero until this function
is called; after the application sets a non-zero value messages created with the
rmr_alloc_msg() function will be allocated with trace data set to the size provided.

rmr_mbuf_t* rmr_rcv_msg(void* vctx, rmr_mbuf_t* old_msg);

The rmr_rcv_msg() function is used to block and wait for a message to arrive. When a
message is received a pointer to an RMR message buffer structure is returned to the caller. The
old_msg parameter allows the application to to pass a message buffer for reuse. If the
application does not have an old buffer, a nil pointer is given and the function will allocate a new
buffer.

rmr_mbuf_t* rmr_rcv_specific(void* uctx, rmr_mbuf_t* msg, char* expect,

 int allow2queue);

This function blocks until a message with a specific transaction ID is received. If the
allowd2queue parameter is set to 1, messagess which do not match the ID are queued
and returned to the application on subsequent calls to rmr_rcv_msg().

int rmr_ready(void* vctx);

This function is used to test whether RMR is capable of sending messages. In other words once
this function returns true (!0) RMR has received a route table (either from a static file or from a
route manager process, and can map message types to endpoints. If the application attempts to
send a message before this function returns true, the sends will fail. Applications which are only
message receivers do not need to use this function.

rmr_mbuf_t* rmr_rts_msg(void* vctx, rmr_mbuf_t* msg);

The rmr_rts_msg() function allows the application to send a response message to the
endpoint from which the message originated. This requires that the application use the same
message buffer that was received for the response as it contains the sender information that is
needed for this function to be successful. If the message cannot be sent, a pointer to the
message buffer is returned and the status in the message buffer is set to indicate the reason. On
success, a nil pointer will be returned.

11

int rmr_set_rtimeout(void* vctx, int time);

This function provides the ability to return from a receive operation after a timeout threshold is
reached before a message is received, and is intended only to support the underlying Nanomsg
transport mechanism (support for Nanomsg is deprecated). The rmr_torcv_msg()
function should be used if timed receives are required.

For transport mechanisms which support a receive timeout, this function allows the application to
set a default timeout for receive operations. If a call to rmr_rcv_msg() does not complete
before time milliseconds has elapsed, the receive function will return a nil message buffer. This
may not be supported by the underlying transport mechanism, and if it is not the return from this
function will be -1.

int rmr_set_stimeout(void* vctx, int rounds);

This function allows the application to set a maximum number of retry rounds that RMR will
attempt when send operations report a transient (retry) failure. Each round of retries requires
approximately 1 millisecond, and setting the number of rounds to zero (0) causes RMR to report
the transient failure to the application without any retry attempts. If the user application does not
invoke this function, the default is one (1) round of retries.

rmr_mbuf_t* rmr_torcv_msg(void* vctx, rmr_mbuf_t* old_msg, int ms_to);

This function because identically to the rmr_rcv_msg() function, and allows the
application to set a specific timeout value for the receive operation. If a message is not received
before the timeout period expires (ms_to milliseconds), a message buffer is returned with the
state set to RMR_ERR_TIMEOUT.

rmr_mbuf_t* rmr_tralloc_msg(void* context, int msize, int trsize,

 unsigned const char* data);

Similar to the rmr_alloc_msg() this function allocates a message buffer, and adds the
referenced trace data to the buffer. The new message buffer is returned.

void rmr_wh_close(void* vctx, int whid);

This function closes an existing wormhole connection.

rmr_whid_t rmr_wh_open(void* vctx, char const* target);

This function allows the application to create a wormhole, direct, connection to another
application. The peer application must also be using RMR (messages sent on a wormhole
connection are RMR messages). The target may be a hostname:port or IP-address:port
combination. Upon successful completion, the wormhole ID is returned; this ID must be passed
on all subsequent calls to wormhole functions for this connection.

rmr_mbuf_t* rmr_wh_send_msg(void* vctx, rmr_whid_t whid, rmr_mbuf_t* msg);

Once a wormhole has been established to a peer application, this function allows the application
to send a message to the peer. All semantics of normal RMR sends (retries, etc.) are observed.
The application may opt not to supply the message type or subscription ID in the message as
neither are used by RMR; they may be required by the peer application depending on the
application level protocol(s) in use.

Message Buffer Functions

The message buffer functions operate directly on a message buffer, and as such do not require
that RMR context as a parameter.

12

int rmr_bytes2meid(rmr_mbuf_t* mbuf, unsigned char const* src, int len);

Copy the bytes referenced by src to the meid field in the RMR message header. Up to len bytes
are copied, though the maximum length of the field as governed by RMR_MAX_MEID is
enforced.

void rmr_bytes2payload(rmr_mbuf_t* mbuf, unsigned char const* src, int len);

This function copies len bytes from src into the message buffer payload. This function is
primarily provided to support wrappers which don’t directly support C pointers.

int rmr_bytes2xact(rmr_mbuf_t* mbuf, unsigned char const* src, int len);

This function copies len bytes of data from src to the transaction ID field in the message buffer.
The number of bytes provided will be limited to a maximum of RMR_MAX_XID.

void rmr_free_msg(rmr_mbuf_t* mbuf);

This function should be used by the application to release the storage used by a message
buffer.

unsigned char* rmr_get_meid(rmr_mbuf_t* mbuf, unsigned char* dest);

The bytes from the meid field of the message buffer are copied to the dest buffer provided by
the application. The full field of RMR_MAX_MEID bytes are copied; the caller must ensure
that dest is large enough.

unsigned char* rmr_get_src(rmr_mbuf_t* mbuf, unsigned char* dest);

The source of a message is copied to the dest buffer provided by the caller. This is generally the
hostname and port, separated by a colon, of the application which sent the message, and is a
zero terminated string. Up to RMR_MAX_SRC bytes will be copied, so the caller must ensure
that dest is at least this large.

unsigned char* rmr_get_srcip(rmr_mbuf_t* msg, unsigned char* dest);

This function copies the source IP address and port, separated by a colon, to the dest buffer
provided by the caller. This is the address of the application which sent the message. Up to
RMR_MAX_SRC bytes will be copied, so the caller must ensure that dest is at least this large.

int rmr_get_trlen(rmr_mbuf_t* msg);

This function can be used to determine the size of the trace information in the message buffer. If
no trace data is present, then 0 is returned.

int rmr_get_trace(rmr_mbuf_t* msg, unsigned char* dest, int size);

The bytes from the trace data, up to &tial bytes, is copied from the message buffer to the dest
buffer provided by the caller. The return value is the number of bytes actually copied.

int rmr_payload_size(rmr_mbuf_t* msg);

This function returns the number of bytes in the message buffer’s payload that are available for
the application to use.

rmr_mbuf_t* rmr_realloc_msg(rmr_mbuf_t* mbuf, int new_tr_size);

This function allows the application to reallocate a message buffer with a different trace data
size. The contents of the message buffer supplied are copied to the new buffer, and a reference
to the new buffer is returned.

int rmr_set_trace(rmr_mbuf_t* msg, unsigned const char* data, int size);

The size bytes, up to the size of the trace data in the message buffer, at data are copied to the
trace portion of the message buffer. The return value is the actual number of bytes copied which
could be less than the number requested.

13

int rmr_str2meid(rmr_mbuf_t* mbuf, unsigned char const* str);

Accepts a pointer to a zero terminated string an copies it to the meid field in the message
header. Up to RMR_MAX_MEID bytes are copied (including the final 0), and the number
copied is returned.

void rmr_str2payload(rmr_mbuf_t* mbuf, unsigned char const* str);

Accepts a pointer to a zero terminated string, and copies the string to the payload portion of the
message buffer. If the string is longer than the allocated payload, the string will be truncated and
will not be terminated with a zero byte.

int rmr_str2xact(rmr_mbuf_t* mbuf, unsigned char const* str);

Accepts a pointer to a zero terminated string and copies the string to the transaction ID portion of
the message buffer. If the string is longer than RMR_MAX_XID, the string will be truncated
and will not be zero terminated.

void* rmr_trace_ref(rmr_mbuf_t* msg, int* sizeptr);

This function returns a pointer to the trace information in the message buffer. The intent is that
the application will treat this as a read/only field and will not write trace data into the message
buffer. The length of data available should be determined by calling rmr_get_trlen().

14

APPENDIX B -- MESSAGE BUFFER DETAILS

The RMR message buffer is a C structure which is exposed in the rmr.h header file. It is used
to manage a message received from a peer endpoint, or a message that is being sent to a peer.
Fields include payload length, amount of payload actually used, status, and a reference to the
payload. There are also fields which the application should ignore, and could be hidden in the
header file, but we chose not to. These fields include a reference to the RMR header
information, and to the underlying transport mechanism message struct which may or may not
be the same as the RMR header reference.

The Structure

The following is the C structure. Readers are cautioned to examine the header file directly; the
information here may be out of date (old document in some cache), and thus it may be incorrect.

typedef struct {
 int state; // state of processing
 int mtype; // message type
 int len; // length of data in the payload (send or received)
 unsigned char* payload; // transported data
 unsigned char* xaction; // pointer to fixed length transaction id bytes
 int sub_id; // subscription id
 int tp_state; // transport state (errno)

 // these things are off limits to the user application
 void* tp_buf; // underlying transport allocated pointer (e.g. nng message)
 void* header; // internal message header (whole buffer: header+payload)
 unsigned char* id; // if we need an ID in the message separate from the xaction id
 int flags; // various MFL_ (private) flags as needed
 int alloc_len; // the length of the allocated space (hdr+payload)
} rmr_mbuf_t;

State vs Transport State

The state field reflects the state at the time the message buffer is returned to the calling
applicaiton. For a send operation, if the state is not RMR_OK then the message buffer
references the payload that could not be sent, and when the state is RMR_OK the buffer
references a fresh payload that the application may fill in.

When the state is not RMR_OK, C programmes may examine the global errno value which
RMR will have left set, if it was set, by the underlying transport mechanism. In some cases,
wrapper modules are not able to directly access the C-library errno value, and to assist with
possible transport error details, the send and receive operations populate tp_state with the
value of errno.

Regardless of whether the application makes use of the tp_state, or the errno value, it
should be noted that the underlying transport mechanism may not actually update the errno
value; in other words: it might not be accurate. In addition, RMR populates the tp_state
value in the message buffer only when the state is not RMR_OK.

Field References

The transaction field was exposed in the first version of RMR, and in hindsight this shouldn’t
have been done. Rather than break any existing code the reference was left, but additional
fields such as trace data, were not directly exposed to the application. The application developer
is strongly encouraged to use the functions which get and set the transaction ID rather than

15

using the pointer directly; any data overruns will not be detected if the reference is used directly.

In contrast, the payload reference should be used directly by the application in the interest of
speed and ease of programming. The same care to prevent writing more bytes to the payload
buffer than it can hold must be taken by the application. By the nature of the allocation of the
payload in transport space, RMR is unable to add guard bytes and/or test for data overrun.

Actual Transmission

When RMR sends the application’s message, the message buffer is not transmitted. The
transport buffer (tp_buf) which contains the RMR header and application payload is the only set
of bytes which are transmitted. While it may seem to the caller like the function
rmr_send_msg() is returning a new message buffer, the same struct is reused and only a
new transport buffer is allocated. The intent is to keep the alloc/free cycles to a minimum.

16

APPENDIX C -- GLOSSARY

Many terms in networking can be interpreted with multiple meanings, and several terms used in
this document are RMR specific. The following definitions are the meanings of terms used within
this document and should help the reader to understand the intent of meaning.

application A programme which uses RMR to send and/or receive messages to/from
another RMR based application.

Critical error An error that RMR has encountered which will prevent further successful
processing by RMR. Critical errors usually indicate that the application should
abort.

Endpoint An RMR based application that is defined as being capable of receiving one or
more types of messages (as defined by a message key.)

Environment
variable A key/value pair which is set externally to the application, but which is available

to the application (and referenced libraries) through the getenv system call.
Environment variables are the main method of communicating information such
as port numbers to RMR.

Error An abnormal condition that RMR has encountered, but will not affect the overall
processing by RMR, but may impact certain aspects such as the ability to
communicate with a specific endpoint. Errors generally indicate that something,
usually external to RMR, must be addressed.

Host name The name of the host as returned by the gethostbyname system call. In a
containerised environment this might be the container or service name
depending on how the container is started. From RMR’s point of view, a host
name can be used to resolve an endpoint definition in a route table.

IP Internet protocol. A low level transmission protocol which governs the
transmission of datagrams across network boundaries.

Listen socket A TCP socket used to await incoming connection requests. Listen sockets are
defined by an interface and port number combination where the port number is
unique for the interface.

Message A series of bytes transmitted from the application to another RMR based
application. A message is comprised of RMR specific data (a header), and
application data (a payload).

Message
buffer A data structure used to describe a message which is to be sent or has been

received. The message buffer includes the payload length, message type,
message source, and other information.

Messgae type A signed integer (0-32000) which identifies the type of message being
transmitted, and is one of the two components of a routing key. See
Subscription ID.

Payload The portion of a message which holds the user data to be transmitted to the
remote endpoint. The payload contents are completely application defined.

RMR context A set of information which defines the current state of the underlying transport
connections that RMR is managing. The application will be give a context
reference (pointer) that is supplied to most RMR functions as the first parameter.

Round robin The method of selecting an endpoint from a list such that all endpoints are
selected before starting at the head of the list.

Route table A series of "rules" which define the possible endpoints for each message key.

17

Route table
manager An application responsible for building a route table and then distributing it to all

applicable RMR based applications.

Routing The process of selecting an endpoint which will be the recipient of a message.

Routing key A combination of message type and subscription ID which RMR uses to select
the destination endpoint when sending a message.

Source The sender of a message.

Subscription
ID A signed integer value (0-32000) which identifies the subscription characteristic

of a message. It is used in conjunction with the message type to determine the
routing key.

Target The endpoint selected to receive a message.

TCP Transmission Control Protocol. A connection based internet protocol which
provides for lossless packet transportation, usually over IP.

Thread Also called a process thread, or pthread. This is a lightweight process which
executes in concurrently with the application and shares the same address
space. RMR uses threads to manage asynchronous functions such as route
table updates. &Term An optional portion of the message buffer that the
application may populate with data that allows for tracing the progress of the
transaction or application activity across components. RMR makes no use of this
data.

Transaction
ID A fixed number of bytes in the message buffer which the application may

populate with information related to the transaction. RMR makes use of the
transaction ID for matching response messages with the &c function is used to
send a message.

Transient
failure An error state that is believed to be short lived and that the operation, if retried

by the application, might be successful. C programmers will recognise this as
EAGAIN.

Warning A warning occurs when RMR has encountered something that it believes isn’t
correct, but has a defined work round.

Wormhole A direct connection managed by RMR between the user application and a
remote, RMR based, application.

18

APPENDIX D -- CODE EXAMPLES

The following snippet of code illustrate some of the basic operation of the RMR library. Please
refer to the examples and test directories in the RMR repository for complete RMR based
programmes.

Sender Sample

The following code segment shows how a message buffer can be allocated, populated, and
sent. The snippet also illustrates how the result from the rmr_send_msg() function is
used to send the next message. It does not illustrate error and/or retry handling.

mrc = rmr_init(listen_port, MAX_BUF_SZ, RMRFL_NOFLAGS);
rmr_set_stimeout(mrc, rmr_retries);

while(! rmr_ready(mrc)) {
 sleep(1);
}

sbuf = rmr_alloc_msg(mrc, 256); // 1st send buffer

while(TRUE) {
 sbuf->len = gen_status((status_msg *) sbuf->payload);
 sbuf->mtype = STATUS_MSG;
 sbuf->sub_id = RMR_VOID_SUBID; // subscription not used
 sbuf = rmr_send_msg(mrc, sbuf);

 sleep(delay_sec);
}

rmr_close(mrc);

Receiver Sample

The receiver code is even more simple than the sender code as it does not need to wait for a
route table to arrive (only senders need to do that), nor does it need to allocate an initial buffer.
The example assumes that the sender is transmitting a zero terminated string as the payload.

rmr_mbuf_t* rbuf = NULL;
void* mrc = rmr_init(listen_port, MAX_BUF_SZ, RMRFL_NOFLAGS);

while(TRUE) {
 rbuf = rmr_rcv_msg(mrc, rbuf); // reuse buffer on all but first loop
 if(rbuf == NULL || rbuf->state != RMR_OK) {
 break;
 }

 fprintf(stdout, "mtype=%d sid=%d pay=%s\n",
 rbuf->mtype, rbuf->sub_id, rbuf->payload);
 sleep(delay_sec);
}

fprintf(stderr, "receive error\n");
rmr_close(mrc);

19

Receive and Send Sample

The following code snippet receives messages and responds to the sender if the message type
is odd. The code illustrates how the received message may be used to return a message to the
source. Variable type definitions are omitted for clarity and should be obvious.

It should also be noted that things like the message type which id returned to the sender (99) is a
random value that these applications would have agreed on in advance and is not an RMR
definition.

mrc = rmr_init(listen_port, MAX_BUF_SZ, RMRFL_NOFLAGS);
rmr_set_stimeout(mrc, 1); // allow RMR to retry failed sends for ~1ms

while(! rmr_ready(mrc)) { // we send, therefore we need a route table
 sleep(1);
}

mbuf = NULL; // ensure our buffer pointer is nil for 1st call

while(TRUE) {
 mbuf = rmr_rcv_msg(mrc, mbuf); // wait for message

 if(mbuf == NULL || mbuf->state != RMR_OK) {
 break;
 }

 if(mbuf->mtype % 2) { // respond to odd message types
 plen = rmr_payload_size(mbuf); // max size

 // reset necessary fields in msg
 mbuf->mtype = 99; // response type
 mbuf->sub_id = RMR_VOID_SUBID; // we turn subid off
 mbuf->len = snprintf(mbuf->payload, plen, "pong: %s", get_info());

 mbuf = rmr_rts_msg(mrc, mbuf); // return to sender
 if(mbuf == NULL || mbuf->state != RMR_OK) {
 fprintf(stderr, "return to sender failed\n");
 }
 }
}

fprintf(stderr, "abort: receive failure\n");
rmr_close(mrc);

20

INDEX

B

BADARG 7

C

CALLFAILED 7
context 2, 10, 12

E

EMPTY 7
endpoint 1-7, 10-11, 15

Env Variables
RMR_BIND_IF 8
RMR_RTG_SVC 8
RMR_RTG_ISRAW 8
RMR_SEED_RT 8
RMR_SRC_NAMEONLY 9
RMR_VCTL_FILE 8

Errors (RMR_ERR_*)
OK 5, 7, 15
BADARG 7
CALLFAILED 7
EMPTY 7
NOENDPT 7
NOHDR 7
NOTSUPP 8
NOWHOPEN 7
OVERFLOW 7
SENDFAILED 7
RETRY 5-7
RCVFAILED 7
TIMEOUT 7, 12
TRUNC 8
UNSET 8
WHID 7

F

Functions
rmr_call 3, 5, 10
rmr_get_ip 3
rmr_get_src 3
rmr_init 2, 6-7, 10
rmr_rcv_msg 3, 6, 10-12
rmr_ready 3
rmr_rts_msg 4-5, 11
rmr_send_msg 4, 11, 16, 19
rmr_wh_close 6
rmr_wh_open 6
rmr_wh_send_msg 6

M

message type 1, 3-5, 11, 20

N

NOENDPT 7
NOHDR 7
NOTSUPP 8
NOWHOPEN 7
nanomsg 12

O

OK 5, 7, 15
OVERFLOW 7

P

payload 1, 3-5, 7-8, 10, 13-16, 19

R

RCVFAILED 7
RETRY 5-7
RMR_BIND_IF 8
RMR_RTG_ISRAW 8
RMR_RTG_SVC 8
RMR_SEED_RT 8
RMR_SRC_NAMEONLY 9
RMR_VCTL_FILE 8
rmr_call 3, 5, 10
rmr_get_ip 3
rmr_get_src 3
rmr_init 2, 6-7, 10
rmr_rcv_msg 3, 6, 10-12
rmr_ready 3
rmr_rts_msg 4-5, 11
rmr_send_msg 4, 11, 16, 19
rmr_wh_close 6
rmr_wh_open 6
rmr_wh_send_msg 6
round robin 1
route table 1-3, 8, 11, 19

S

SENDFAILED 7
subscription ID 1, 3-6, 11-12

T

TIMEOUT 7, 12
TRUNC 8
trace data 4, 11-15
transaction ID 3, 5, 10-11, 13-15

U

UNSET 8

W

WHID 7

