
Coordinated Service Exposure
Open Source enabler for R1

OSC NONRTRIC team (EST)

Objectives – Service Exposure

• Add a Service registry for SMO-/NonRTRIC-Platform-services & rApp-services to
register/discover/access services

• Services/rApps can only see/use the service they are authorised to see/use

• K8s API gateway can be Kong or Istio Ingress gateway. We use Istio.
• Can be layered on top of K8s Network Policies (e.g. Calico) to enforce isolation

• Leverage Istio & Authorisation policies to enable service exposure from rApps and Platform services in a K8s
environment

• Investigate how to manually, declaratively, and programmatically easily implement exposure (authorisation)
support in (K8s) platform services

• Investigate how to manually, declaratively, and programmatically apply exposure (authorisation) policies to
rApp µservices during deployment
• Enforced by Istio
• Authenticated via Keycloak

• Use/Integrate 3GPP-spec’ed CAPIF core functionality for Registry/Discovery.
• Investigate automated combined CAPIF Registration & Deployment

A little bit about Istio, Keycloak and helping K8s Services use authorisation tokens

Lightweight Service authentication & authorisation

Authentication Support Service: sidecar to fetch authorization
token from Keycloak & insert into request headers

How an rApp’s µService uses authorisation tokens – automatically enabled at
instantiation time … a few different options

OSC Investigation: "Coordinated Service Exposure" for Non-Realtime RIC - wiki.o-ran-sc.org

https://wiki.o-ran-sc.org/display/RICNR/Release+E%3A+Coordinated+Service+Exposure#ReleaseE:CoordinatedServiceExposure-UsingX509certificates

rApps deployment & security model POC

Keycloak

rapps-helm-installer

Postgres

rApp’s
µService

Retrieve Access token

rapps-istio-mgrrapps-keycloak-mgr

chartmuseum

rApp’s
namespace

Default ns

rApp services

Service Description

postgres Keycloak database

keycloak Token service

chartmuseum Helm chart repository

rapps-helm-installer Service to automate an rApp’s µService installation

rapps-istio-mgr Service to automate Istio setup

rapps-keycloak-mgr Service to automate keycloak client setup

Keycloak Client Authenticator

4 Different Ways of using client authenticator

• Signed Jwt
• Client Id and Secret
• X509 Certificate
• Signed Jwt with Client Secret

Note: Signed JWT with client secret works the same way as Signed JWT except the JWT is signed with
the client secret instead of the private key

Sample Token

Sample istio AuthorizationPolicy

spec:
rules:
- from:

- source:
requestPrincipals:
- http://192.168.49.2:31560/auth/realms/provider/

- to:
- operation:

methods:
- GET
paths:
- /rapp-provider

when:
- key: request.auth.claims[clientRole]
values:
- provider-viewer

selector:
matchLabels:
app.kubernetes.io/instance: rapp-provider

ISS

Method call(s) allowed

Rapp prefix

Field in token

Role Name

Rapp keycloak – “secret” flow

Rapp keycloak – “x509” flow

Rapp keycloak – “JWT” flow

A little bit about using CAPIF functions (API) for Registration/Discovery

CAPIF APIs (3GPP TS 29.222)

• Majority of CAPIF API functions can be code-generated from 3GPP specs
• Work required to map from CAPIF registry operations to underlying platform capabilities

to enforce Service exposure
• E.g. Instantiation & Registration at the same time (Ref APP LCM in ONAP/EIAP)

… these were just brief glimpses. Follow-up discussions for those interested.

