
1

xApp Writer's Guide

Abukar Mohamed, Shraboni Jana, Matti Hiltunen, Zhe Huang,
Ron Shacham, Tommy Carpenter, and Scott Daniels

June 22, 2021

Abstract

This document describes how to write xApps and how to deploy them
on the RIC platform.

1 Introduction

Logically, an xApp is a entity that implements a well-defined function. Mechan-
ically, an xApp is a K8s pod that is currently (Amber) restricted to have one
container. In order for an xApp to be deployable, it needs to have an xApp
descriptor (JSON) that describes the xApp’s configuration parameters and in-
formation the RIC platform needs to configure the RIC platform for the xApp.
The xApp writer will also need to provide a JSON schema for the descriptor.

In addition to these basic requirements, an xApp may do any of the following:

• Read initial configuration parameters (passed in the xApp descriptor).

• Receive updated configuration parameters.

• Send and receive messages.

• Read and write into a persistent storage (key-value store).

Receive A1-P policy guidance messages - specifically operations to create
or delete a policy instance (JSON payload on an RMR message) related
to a given policy type.

• Define a new A1 policy type.

Make subscriptions via E2 interface to the RAN, receive E2 INDICATION
messages from the RAN, and issue E2 POLICY and CONTROL messages
to the RAN.

• Report metrics related to its own execution or observed RAN events.

The lifecycle of an xApp consists of the following states:

•

•

2

• Development: Design, implementation, local testing.

Released: The xApp code and xapp descriptor are committed to LF Gerrit
repo and included in an O-RAN release. The xApp is packaged as Docker
container and its image released to LF Release registry.

On-boarded/Distributed: The xApp descriptor (and potentially helm chart)
is customized for a given RIC environment and the resulting customized
helm chart is stored in a local helm chart repo used by the RIC environ-
ment’s xApp Manager.

Run-time Parameters Configuration: Before the xApp can be deployed,
run-time helm chart parameters will be provided by the operator to cus-
tomized the xApp Kubernetes deployment instance. This procedure is
mainly used to configure run-time unique helm chart parameters such as
instance UUID, liveness check, east-bound and north-bound service end-
points (e.g., DBAAS entry, VES collector endpoint) and so on.

Deployed: The xApp has been deployed via the xApp Manager and the
xApp pod is running on a RIC instance. For xApps where it makes sense,
the deployed status may be further divided into additional states con-
trolled via xApp configuration updates. For example,

– Running

– Stopped

2 xApp Specification and LocaL Testing

2.1 xApp development

XApps can be written using the RIC utility libraries (RMR, SDL, logging, etc)
directly or by utilizing the xApp frameworks (in go, C++, and Python). The xApp
frameworks are described in 4.

For RIC xApps to be deployable, they need to have a proper docker im- age
generated and available in a accessible docker registry, and a valid xApp
descriptor.

2.2 xApp Descriptor

The xApp descriptor is provided by the xApp developer. xApp Descriptor
includes all the basic and essential information for the RIC platform to manage
the life cycle of the xApp. Information and configuration included in the xApp
descriptor will be used to generate the xApp helm charts and define the data
flows to the north and south bound traffics. xApp developer can also include
self-defined internal parameters that will be consumed by the xApp in the xApp
descriptor.

•

•

•

•

3

The fields in the xApp descriptor is defined by the xApp JSON schema.

A valid xApp descriptor will have to pass the xApp JSON schema validation.
Please see the schema section for the details.

The xApp descriptor follows a JSON structure. The following are the key
sections that defines an xApp.

name: (REQUIRED) this is the unique identifier to address an xApp. A
valid xApp descriptor must includes the xapp name attribute. The
following is an example.

"name": "example_xapp",

version: (REQUIRED) this is the semantic version number of the xApp
descriptor. It defines the version numbers of the xApp artifacts (e.g., xApp
helm charts) that will be generated from the xApp descriptor. Together
with the xapp name, they defines the unique identifier of an xApp artifact
that can be on-boarded, distributed and deployed. The following is an
example.

"version": "1.0.0",

containers: (REQUIRED) This section defines a list of containers that
the xApp will run. For each container, a structure that defines the con-
tainer name, image registry, image name, image tag, and the command
that it runs is defined. The name and images are REQUIRED. The com-
mand and argument lists are optional. The following is an example that
defines two containers.

"containers": [

{
"name": "example_container_1",
"image": {

"registry": "example_image_registry_1",
"name": "example_image_name_1",

"tag": "example_image_tag_1"
},
"command": ["example_command_1"],
"args": ["example_argument_1"]
"resources": {
 "limits": {},
 "requests": {}
 }

},
{

"name": "example_container_2",
"image": {

"registry": "example_image_registry_2",
"name": "example_image_name_2",

"tag": "example_image_tag_2"
},
"command": ["example_command_2"],
"args": ["example_argument_2"]
"resources": {
 "limits": {},
 "requests": {}
 }

•

•

•

4

}

],

5

controls: (Optional) The control section holds the internal configura-
tion of the xApp. Therefore, this section is xApp specific. This section can
include arbitrary number of xApp defined parameters. The xApp
consumes the parameters by reading the xApp descriptor file that will
be injected into the container as a JSON file. An environment variable
XAPP DESCRIPTOR PATH will point to the directory where the JSON
file is mounted inside the container. If the controls section is not empty,
the xApp developer must provide the schema file for the controls section.
Please refer to Schema for xApp Descriptor for creating such schema file.
The following is an example for the controls section.

"controls": {

"active": True,
"requestorId": 66,
"ranFunctionId": 1,
"ricActionId": 0,
"interfaceId": {

"globalENBId": {
"plmnId": "310150",

"eNBId": 202251
}

}

},

metrics: (Optional) The metrics section of the xApp descriptor holds
information about metrics provided by the xApp. Each metrics item re-
quires the objectName, objectInstance, name, type and description of each
counter. The metrics section is required by VESPA manager (RIC plat-
form component) and the actual metrics data are exposed to external
servers via Prometheus/VESPA interface. The following is an example.

"metrics": [

{
"objectName": "UEEventStreamingCounters",
"objectInstance": "SgNBAdditionRequest",
"name": "SgNBAdditionRequest",
"type": "counter",
"description": "Total num. of SG addition req. events processed"

},
{

"objectName": "UEEventStreamingCounters",
"objectInstance": "SgNBAdditionRequestAcknowledge",
"name": "SgNBAdditionRequestAcknowledge",
"type": "counter",
"description": "Total num. of SG addition req. ack. events processed"

}

]

messaging: (Optional) this section defines the communication ports for
each containers. It may define list of RX and TX message types, and the

•

•

•

6

A1 policies for RMR communications implemented by this xApp. Each
defined port will creates a K8S service port that are mapped to the con-
tainer at the same port number. This section requires ports that contains
the port name, port number, which container it is for. For RMR port, it
also requires tx and rx message types, and A1 policy list.

"messaging": {

"ports": [

{
"name": "http",
"container": "mcxapp",
"port": 8080,
"description": "http service"

},
{

"name": "rmrdata",
"container": "mcxapp",
"port": 4560,
"txMessages":

[
"RIC_SUB_REQ",
"RIC_SUB_DEL_REQ"

],
"rxMessages":
[

"RIC_SUB_RESP",
"RIC_SUB_FAILURE",
"RIC_SUB_DEL_RESP",
"RIC_INDICATION"

],
"policies": [1,2],
"description": "rmr data port for mcxapp"

},
{

"name": "rmrroute",
"container": "mcxapp",
"port": 4561,
"description": "rmr route port for mcxapp"

}
]

},

7

liveness probes: (Optional) The liveness probe section defines how live-
ness probe is defined in the xApp helm charts. You can provide ether a
command or a http helm liveness probe definition in JSON format. This
section requires initialDelaySeconds, periodSeconds, and either httpGet or
exec. The following is an example for http-based liveness probes.

•

to use the default 4560 port for rmr-data and 4561

for rmr-route.

the
minus sign (-), and the period (.). Period characters are
allowed only when they are used to delimit the com-
ponents of domain style names.

8

"livenessProbe": {

"httpGet": {
"path": "ric/v1/health/alive",
"port": "8080"

},
"initialDelaySeconds": "5",
"periodSeconds": "15"

},

The following is an example for RMR-based liveness probes

"livenessProbe": {

"exec": {

"command": ["/usr/local/bin/rmr_probe"]
},
"initialDelaySeconds": "5",
"periodSeconds": "15"

},

readiness probes: (Optional) The readiness probe section defines how
readiness probe is defined in the xApp helm charts. You can provide ether
a command or a http helm readiness probe definition in JSON for- mat.
This section requires initialDelaySeconds, periodSeconds, and ei- ther
httpGet or exec.The following is an example for http-based readiness
probes.

"readinessProbe": {

"httpGet": {
"path": "ric/v1/health/alive",
"port": "8080"

},
"initialDelaySeconds": "5",
"periodSeconds": "15"

},

The following is an example for RMR-based readiness probes

"readinessProbe": {

"exec": {

"command": ["/usr/local/bin/rmr_probe"]
},
"initialDelaySeconds": "5",
"periodSeconds": "15"

},

2.3 Schema for the xApp Descriptor

JSON schema is used to describe the attributes and values in the xApp descrip-
tor JSON file. The xApp onboarding process verifies the types and values of the

•

9

xApp parameters in the descriptor. If mismatches are found, xApp onboarding
will return failure. The schema file consists of two parts: sections that are static
and cannot be changed for different xApp, and xApp specific controls section.
When an operator is onboarding an xApp that defines a control section, he/she
will provide the controls section schema with together with the xApp descriptor.
The xapp onboarder will combine the schema files into one.

2.3.1 How to Create Schema for the Controls Section

You can submit arbitrary schema for the controls section. However, if the xApp
descriptor contains a controls section, you have to provide the correct schema
that describes it. If the xApp does not require a control section, you can ignore
the control section schema. It is highly recommended to use draft-07 schema.
The following is a skeleton schema that you can use

{
"$schema": "http://json-schema.org/draft-07/schema#",
"$id": "#/controls",
"type": "object",
"title": "Controls Section Schema",
"required": [

"REQUIRED_ITEM_1",
"REQUIRED_ITEM_2"

],
"properties": {

"REQUIRED_ITEM_1": {REQUIRED_ITEM_1_SUB_SCHEMA},
"REQUIRED_ITEM_2": {REQUIRED_ITEM_2_SUB_SCHEMA}

}

}

This section will be replaced by the submitted control section schema. If the
controls section schema is not provided, the following will be used to make sure
that the xApp onboarder will reject an xApp descriptor with an undefined control
section.

"controls": {
"required": [

" empty_control_section "
]

}

2.4 Local Testing

To test onboard an xApp, you can utilize either the DMS CLI tool. The DMS
CLI tool will return errors that can help you pinpoint problems in your xApp
descriptor.

2.4.1 Prerequisites

The DMS CLI tool requires a host with docker daemon and local helm repo
installed. We recommend using helm version v3.5.x and above. If you are using a
Ubuntu host, you can use the following commands to prepare your environment
for the DMS CLI tool.

sudo apt-get update

•

http://json-schema.org/draft-07/schema

10

sudo apt install docker.io

2.4.2 Create a local helm repo

You can create a local helm repo by running the following command

docker run -d -p 8080:8080 -e DEBUG=1 -e STORAGE=local \

-e STORAGE_LOCAL_ROOTDIR="/charts" chartmuseum/chartmuseum:latest

2.5 Test On-boarding using xApp-onboarder/DMS CLI Tools

Please replace the blue text with the correct values for your xApp.

1. Install xapp-onboarder DMS CLI

git clone "https://gerrit.o-ran-sc.org/r/ric-plt/appmgr"
dev/xapp_onboarder

pip3 install ./

2. Set up the environment variables for DMS CLI connection

export CHART_REPO_URL="http://0.0.0.0:8080"
It should return True if your DMS CLI tool is properly connected to the RIC
instance cli health

3. Onboard your xApp. Please refer to xApp descriptor for preparing for the

xApp descriptor

https://gerrit.o-ran-sc.org/r/ric-plt/appmgr

11

Make sure that you have the xapp descriptor
config file and the schema file at your local file system
cli onboard CONFIG_FILE_PATH SHCEMA_FILE_PATH

If onboarding fails, the DMS CLI tool will return you messages that
indicate where the errors are in the descriptor.

4. (OPTIONAL) Download the xApp helm charts

dms_cli download_helm_chart --xapp_chart_name=XAPP_CHART_NAME --version=VERSION --output_path=OUTPUT_PATH

5. (OPTIONAL) Download the xApp override values.yaml file

dms_cli download_values_yaml --xapp_chart_name=XAPP_CHART_NAME --version=VERSION --output_path=OUTPUT_PATH

2.6 xApp deployment and undeployment

To deploy an xApp named ”EXAMPLE-XAPP”, you need a fully functioning
near real-time RIC platform. Please refer to the other guide about how to create
one.

To deploy xApp using the DMS CLI , run the following commands.

1. Run DMS CLI to install xapp

dms_cli install --xapp_chart_name=XAPP_CHART_NAME --version=VERSION --
namespace=NAMESPACE

2. Run DMS CLI to uninstall xapp

dms_cli uninstall --xapp_chart_name=XAPP_CHART_NAME --namespace=NAMESPACE

3 Functions

The RIC platform provides a set of functions that the xApps can use to accom-
plish their tasks.

3.1 Registering/De-registering Xapp

The xapp after deployment needs to be registered to the RIC platform by sharing
its config to the platform.

Otherwise RMR and other functionalities described later will not be available for
the xapp. This could be accomplished using REST API's described below.

12

1. Registration to xapp manager

Xapp indicates RIC platform i.e xapp manager to register itself.

curl -X 'POST' 'http://<appmgr_svcIP>:8080/ric/v1/register' -H 'accept: application/json' -H 'Content-Type:
application/json' -d '{

 "appName": "mcxapp",

 "appVersion": "1.0.0",

 "configPath": "/opt/ric/config",

 "appInstanceName": "mcxappinstance",

 "httpEndpoint": "10.103.5.170:8080",

 "rmrEndpoint": " 10.109.124.128:4560",

 "config": "xapp config in JSON"

}'

Here the parameters marked in bold are mandatory and are self-explanatory. The
"configPath", is the http URL. If this parameter is not set the default will be set to
"/ric/v1/config". This parameter indicates the xapp manager that when it queries for
the xapp config, it needs to add this URL in its request.

The xapp can also send its config during registration itself, by populating "config"
parameter. When this parameter is set, xapp manager will not query for the config
again.

2. Get Config query from xapp to xapp manager

Xapp needs to implement this REST interface when xapp -manager queries for it.
If during registration if the configuration is already sent, xapp manager would not
request again for the configuration.

This request will be sent by xapp-manager.

curl -X 'GET' 'http://<xapp:8080>/ric/v1/config' -H 'accept: application/json'

In return the xapp must respond with the below JSON response.

[

 {

 "metadata": {

 "xappName": "string",

 "configType": "json"

 },

 "config": {}

 }

]

13

3. De-Registration from xapp manager

Xapp indicates to un-register from RIC platform

curl -X 'POST' 'http://<appmgr_svcIP>:8080/ric/v1/deregister' -H 'accept: application/json' -H 'Content-Type:
application/json' -d '{

 "appName": "mcxapp",

 "appInstanceName": "mcxappinstance"

}

NOTE: If golang based xapp-frame is used by xapps, the registration/un-
registration of xapp and sending configurations to xapp-manager is a built-in
feature. There is no extra implementation needed from xapp.

For xapp's that don’t want to implement GET config API's, they can still
register/unregister by sending REST API's 1 and 3 from the command line. To do
that, ensure to fill the "config" parameter mandatorily. Here the idea is to send the
registration and configuration in a single REST call.

Example:

curl -H "accept: application/json" -H "Content-Type: application/json" -d "@mcxapp.json"
http://<appmgr_svcIP>:8080/ric/v1/register

where, mcxapp.json contains

{

"appName": "mcxapp",

"appVersion": "1.0.11",

 "configPath": "",

"appInstanceName": "mcxapp",

"httpEndpoint": "1.2.3.4:8080",

 "rmrEndpoint": "10.111.7.117:4560",

 "config": " {\"messaging\":{\"ports\":[{\"container\":\"mcxapp\",\"description\":\"rmr send data port for
mcxapp\",\"name\":\"rmr-data-
out\",\"policies\":[],\"port\":4562,\"rxMessages\":[],\"txMessages\":[]},{\"container\":\"mcxapp\",\"descripti
on\":\"rmr receive data port for
mcxapp\",\"name\":\"rmrdata\",\"policies\":[],\"port\":4560,\"rxMessages\":[\"RIC_UE_CONTEXT_RELEA
SE\",\"RIC_SGNB_ADDITION_REQ\",\"RIC_SGNB_ADDITION_ACK\...."}

3.2 Messaging - RMR

RMR is a message router library which an application can use to send messages
to other RMR based applications. The destination of each message is governed
by the message type and subscription ID, or just the message type. RMR is re-
sponsible for establishing and managing each connection freeing the application
from any network connectivity management.The library is available in repo [1].

14

{

{

∗

−

∗ \

— | | − {

∗

−
— | | − {

This repo contains the source and documentation for both the core RMR

library and for the Python bindings which allow a Python (v3) application to
use RMR to send and receive messages. The repo also contains examples which
illustrate RMR use case. The README files for the repo and its directories are
comprehensive for using and testing the library.

3.2.1 Using RMR from C++

RMR functionality is inherent to the Xapp Core System of C++ xApp frame-
work. The section provides snippets of key RMR functions to be used.

//RMR context I n i t i a l i z a t i o n

void ∗ xapp rmr ctx = r m r i n i t (l i s t e n p o r t , RMR MAX RCV BYTES, RMRFL NONE) ;

i f (xapp rmr ctx == NULL)
cout<< ” Unable to i n i t i a l i s e RMR Context ” << endl ;
e x i t (1) ;

}

// Check i f rmr contex t i s ready b e f or e invokin g sender / r e c e i v e r

i f (! rmr ready (xapp rmr ctx))

cout<< ”RMR Context Not ready ” << endl ;
}

// RMR Send Message

rmr mbuf t send msg = NULL;
// a l l o c a t e the b u f f e r

send msg = rmr al loc msg (send msg , RMR DEF SIZE) ;

char msg = ” MessagePayload 0 ” ;
//Copy the message to RMR Buffer .

memcpy(send msg−>payload , msg , msg length) ;

// Send the message and check the s t a t u s

send msg = rmr rcv msg (xapp rmr ctx , send msg) ;
i f (send msg >mtype < 0 send msg >s t a t e != RMR OK)

cout << ”Bad Message Sta te : ” << send msg >s t a t e << endl ;
e x i t (1) ;

}

//RMR Receive Message

rmr mbuf t rcv msg = NULL;
rcv msg = rmr rcv msg (xapp rmr ctx , rcv msg) ;
i f (rcv msg >mtype < 0 rcv msg >s t a t e != RMR OK)

cout << ”Bad Message Sta te : ” << rcv msg >s t a t e << end l ;
e x i t (1) ;

}

3.2.2 Using RMR from go

RIC xApps can communicate with other each and with other RIC platform com-
ponents via RMR, which is a very thin but robust library that allow applications

15

{

{ }

}

to send and receives RMR messages. RMR message consists of message header
and payload. The message header defines the type of the message to be sent, a
subscription ID that identifies a subscription of routing entry, a MEID, which
the global RAN name and a application specific transaction ID. The message
payload carries the actual user data.

Below is a sample code that attempts to send RMR message:

meid := &xapp . RMRMeid RanName : RanName

mtype , := xapp . Rmr. GetRicMessageId (msgName)
data := [] byte { 1 , 2 , 3 }
params := &xapp . RMRParams{Mtype : mtype , SubId : −1, Meid : meid , Xid : txid ,

Payload : data , PayloadLen : len (data)}

i f ok := xapp . Rmr. SendMsg (params) ; ! ok
xapp . Logger . Error (” Sending ’% s ’ with t x id=%s f a i l e d ! ” , msgName , t x id)
i f xapp . Rmr. Is Retry Error (params)

// Retry or do something smart

return
}

xapp . Logger . I n f o (”RMR message s en t s u c c e s s f u l l y ! ”)

3.2.3 Using RMR from Python

There are two ways to use RMR in Python; you can use the rmr python bindings
directly, or you can use the python xapp framework. Here, we discuss the direct
bindings and refer the reader to the ”Frameworks” section for the latter. Note
that the xapp framework for python uses this rmr bindings library internally.

The rmr python bindings are available in the rmr package in [pypi]. They are
a CTYPES wrapper around the C rmr shared object; it is not a re-implementation
of the API in python. As such the underlying rmr C library needs to be installed.
As of rmr v4 and greater, it uses SI95 rather than NNG.

The library provides a direct translation of the RMR API in the rmr.rmr
module, and some higher level helper functions in the rmr.helpers module.

Please see: [rmr examples] for full examples of send, receive, and some helper
functions such as rmr_rcvall_msgs. Also, the [rmr unit tests] are a great resource
for snippets of direct rmr usage.

Send snippet:

s imu ltan e ou s ly a l l o c and s e t f i e l d s in i t

pay = ’ h e l l o ’
sbuf = rmr . rmr al loc msg (MRC,

256 ,
payload=pay ,
g e n t r a n s a c t i o n i d=True ,
mtype=14 , meid= ’
GNB10001 ’ ,
sub id =654321)

summary = rmr . message summary (sbuf) . # generate a h e l p f u l summary
sbuf send = rmr . rmr send msg (MRC SEND, sbuf send)
send summary = rmr . message summary (sbuf send)

{

https://pypi.org/project/rmr/
https://gerrit.o-ran-sc.org/r/gitweb?p=ric-plt/lib/rmr.git%3Ba%3Dtree%3Bf%3Dsrc/bindings/rmr-python/examples%3Bh%3D942c19320368bec6866b9f2bb0a100ed4d57e193%3Bhb%3D116d0f5b6c5b1a396fed835c714a5d568c264cc5
https://gerrit.o-ran-sc.org/r/gitweb?p=ric-plt/lib/rmr.git%3Ba%3Dblob_plain%3Bf%3Dsrc/bindings/rmr-python/tests/test_rmr.py%3Bhb%3D116d0f5b6c5b1a396fed835c714a5d568c264cc5

16

{

−
−

a s s e r t send summary [” message s t a t e ”] == 0

Receive snippet:

r e ce i v e a s i n g l e message

s bu f r c v = rmr . rmr alloc msg (MRC RCV, 256)

s bu f r c v = rmr . rmr torcv msg (MRC RCV, sbuf rcv , 2000)

g e t whole mailbox
for (msg , sbuf) in h e l p e r s . rmr rcvall msgs raw (s e l f . mrc) :

rmr . rmr f re e (sbuf)
print (summary)

s e l f . rmr f re e (sbuf)

3.3 Shared data layer - SDL

Shared data layer provides xApps the capability to share data directly via
database. SDL APIs provide simple yet flexible way to store and retrieve data
while hiding all the unnecessary details such as type and location of database,
all management operations of database layer such as high availability, scaling,
load-balancing.

SDL uses following 4 environment variables to connect to Redis instance:
DBAAS SERVICE HOST, DBAAS SERVICE PORT, DBAAS SERVICE SENTINEL PORT
and DBAAS MASTER NAME

Information about various SDL APIs and usage can be found at [].

3.3.1 Using SDL from C++

Depending on the synchronous or asynchronous transaction required APIs can
be called accordingly. Sample code below:

#include < s d l / syncs to rage . hpp>

// data type d e f i n i t i o n s from s d l
using Namespace = std : : s t r i n g ;
using Key = std : : s t r i n g ;
using Data = std : : vector <uint 8 t >;
using DataMap = std : : map<Key , Data >;
using Keys = std : : set <Key>;

void func ()

std : : unique ptr <shareddata layer : : Sync Storage > s d l (sh ar eddat a l aye r : : Sync Storage : : c r e a t e ()

Namespace ns (” xapp−dev ”) ; // d e f i n e namespace

Keys K = sdl >find Keys (ns , . . .) ;
sdl >s e t (ns , . . .) ;

. . .
}

17

{
| | {

{
}

}

{

{

}

{
∗ {

} {

3.4 Using R-NIB

RIC applications can obtain the list of GNBs connected/discovered, and as well
as their connection status stored in RNIB.

3.4.1 Using R-NIB from go

Following example shows how the GO applications can access RNIB and extract
GNB related information.

// Get the l i s t of GNBs

gnbs , e r r := xapp . Rnib . GetListGnbIds ()
i f e r r != n i l len (gnbs) == 0

i f e r r != n i l

xapp . Logger . Error (” GetListGnbIds f a i l e d with e r r o r : %v” , e r r)

i f len (gnbs) == 0

xapp . Logger . I n f o (”gNBs not d i s c o v e r e d y et ! ”)

return
}

// Print the RAN name and connection s t a t u s of each GNB

for , gnb := range gnbs
ranName := gnb . GetInventoryName ()
inf o , e r r := xapp . Rnib . GetNodeb (ranName)
i f e r r != n i l

l og . Error (” GetNodeb () f a i l e d f o r ranName=%s : %v” , ranName , e r r)
continue

xapp . Logger . I n f o (”NodeB[’ % s ’] connect ion s t a tu s = %d” , ranName ,
node Info . Connection Status)

}

3.5 Watching for Config Changes

After starting up with the initial configuration, xApps can watch and read live
the config file while running. In other words, xApps don’t need to be restarted
to have their config file changes to take effect. To watch for config file changes,
xApps provide a callback function for xApp-framework to run whenever a file
change occurs.

3.5.1 Watching for config changes in go

// Define the c a l l b a c k

func (e MyExampleXApp) StatusCB (f string)
i f appReady

return true
else // A ppl i c at i on not ready yet , do something

return f a l s e
}

18

−

∗

{

}

// Re gis ter the c a l l b a c k to xApp framwork

xapp . Resource . In ject Status Cb (u . StatusCB)

3.6 Logging

The RIC platform provides a logging library that ensures that the log entries
generated by xApps will have a standard format and will be handled uniformly.
The ORAN wiki describing logging best practices can be found at [2].

The logging repository used in RIC platform with detailed documentation
is available at [3]. The logging library writes the logs to stdout. Each log entry
is one line. Fields in the log entry

ts – Timestamp, number of milliseconds since Unix Epoch (i.e. 1970-01-01
00:00:00 +0000 (UTC)), set by the logging library

crit – Severity level of the log, given by the application process: DEBUG,
INFO, WARNING, ERROR

• id – the name of the process, set by the logging library

• msg – log message given by the application process

mdc – a list of key value pairs, both strings, unique key names, given by
the application process

3.6.1 Using logging from C++

Library initialization is an optional step, which can be done using mdclog init()
function. By calling mdclog init() the library user can define the logger identity
tag, which is added to every log entry by the library. For example -

#include<mdclog/ mdclog . h>
// l o g t e s t . cc

void i n i t l o g ()
{

mdc l o g at t r t a t t r ;
m d c l o g a t t r i n i t (& a t t r) ;
m d c l o g a t t r s e t i d e n t (at tr , ” l o g t e s t ”) ; // l o g t e s t w i l l be the ” id ”(i d e n t i t y)
mdc l o g i ni t (a t t r) ;
mdc l o g at t r de s tro y (a t t r) ;

}
void func ()

i n i t l o g () ;
. . .
// Se v e r i t y Level INFO

mdclog wr i t e (MDCLOG INFO, ”The i n f o i s from , f i l e= %s , l i n e=%d” , FILE , LINE) ;
. . .
// Se v e r i t y Level ERROR

mdclog wr i t e (MDCLOG ERR, ”The e r r o r i s from , f i l e= %s , l i n e=%d” , FILE , LINE) ;

•

•

•

19

∗

— {

∗ {
} {

∗

∗∗

. . .
// Se v e r i t y Level WARNING

mdclog wr i t e (MDCLOG WARN, ”The e r r o r i s from , f i l e= %s , l i n e=%d” , FILE , LINE) ;
. . .

h t tps : //www. o v e r l e a f . com/ p r o j e c t /5 e 2 b 4816 b 24 ba 10001217583 // Se v e r i t y Level DEBUG
mdclog wr i t e (MDCLOG DEBUG, ”The e r r o r i s from , f i l e= %s , l i n e=%d” , FILE , LINE) ;

. . .
}

If the mdclog init() function is not called,in other words, init log() is not
called in func(), the library uses the program name as the identity.For detailed
documentation, refer [3] and [2].

3.7 ASN.1 Encoding/Decoding

XApp development uses ASN1C library [4] for encoding and decoding of asn
messages. The E2AP, E2SM, X2AP, F2AP etc. asn files can be compiled into
a set of .c and .h files.

‘ asn 1 c −f i n c l u d e s −quoted −fcompound−names −fno−include −deps −f i n d i r e c t −c ho i c e −gen−PER −no−gen

For more details regarding the APIs provided by the library, refer [5].

3.7.1 Using ASN.1 from C++

Sample code to encode using PER encoding rules for E2AP PDU t structure
created in memory.

E2AP PDU t e2pdu = c a l l o c (1 , s i z e o f (E2AP PDU t)) ;
. . . .
a s n e n c r v a l t r e s =

a s n e n c o d e t o b u f f e r (0 , ATS ALIGNED BASIC PER, &asn DEF E2AP PDU , e2pdu , data buf , ∗

i f (r e s . encoded == 1)
mdclog write (MDCLOG ERR, ” Fai led to encode : %s , %s ” , asn DEF E2AP PDU . name , er rmsg buf f

else

i f (d a t a s i z e < r e s . encoded)

mdclog write (MDCLOG ERR, ” Buf f er ass igned small to encode : %s ” , asn DEF E2AP PDU . name
}

}

And for decoding the encoded buffer into E2AP PDU t data structure using

:

E2AP PDU t e2pdu = 0 ;
a s n d e c r v a l t r v al ;

ASN STRUCT RESET(asn DEF E2AP PDU , e2pdu) ;

r v a l = asn decode (0 , ATS ALIGNED BASIC PER, &asn DEF E2AP PDU , (void)& e2pdu , data buf , d a t a
i f (r v a l . code == RC OK)
{

. . .

}

http://www/

20

∗ {

3.8 Metrics

RIC applications can act as metrics providers and expose the metrics data to
external centralized time-series DB servers. Prometheus interface is used to
periodically collect metrics data and forward to ONAP via VES agent.

GO xApp-framework provides generic interfaces to register various metrics
types. Following example code defines two counters, registers using Prometheus
GO-client interface and updates the counters when the respective messages are
processed.

// Define two metrics counters t h a t the xApp p rovide s

metrics := [] xapp . CounterOpts{
{Name : ” RICIndications Rx ” , Help : ”The t o t a l number o f RIC i n d i c a t i o n ev ents ” } ,

{Name : ” RICExampleMessageRx ” , Help : ”The t o t a l number o f RIC example events ” } ,
}

// Regi s ter the metri cs

s t a t s := xapp . Metr ic . Register Counter Group (metr i cs , ” ExampleXapp”)

// Update E2APIndications Rx counter when RIC in d i ca t i o n message i s r ece iv ed

s t a t s [” E2APIndicationsRx ”] . Inc ()

// Update RICExampleMessageRx counter when RIC example message i s r e ce iv ed

s t a t s [” RICExampleMessageRx ”] . Inc ()

3.9 Health checking

An xApp has to provide a method for K8s to check the health of the xApp. The
RIC supports two types of health checks: HTTP-based and RMR-based.

3.9.1 Registering Status Callback for Health Checking in go

xApp-framework normally handles responding Kubernetes health probes (alive-
ness and readiness) autonomously. However, xApps can register a status call-
back function for xApp-framework to call each time a HTTP health probe re-
quest is received, and determine what kind of status is returned to Kubernetes.
This is useful in case that something goes wrong during startup, or the appli-
cation waits external command to proceed with the completion of the start-up.
In these particular cases, applications can simply return negative response and
status will be visible in Kubernetes as not ready. For example:

// Define the c a l l b a c k

func (e MyExampleXApp) ConfigChangeHandler (f string)
// Do something u s e f u l here

}

21

3.10 Using E2 from xApps

In the RIC Amber release, xApps directly implement the E2 protocol messages,
that is, they construct E2 subscription/control messages in ASN.1 format and
receive the E2 indication messages in ASN.1 format. The E2 message payload
is sent to the RAN using an RMR message where the E2 ASN.1 message is the
message payload and the RMR meid field is populated with the target E2 node
id.

4 Frameworks

The RIC platform currently provides frameworks that make it easier to construct
xApps in go and C++.

4.1 Go framework

xApp framework is a simple skeleton designed for rapid development of RIC
xapps based on Go. Following figure depicts the high level architecture of xApp-
framework, which consists of several loosely linked components that provide the
common functions needed by the xApp developers.

For GO-based xApps, application developers don’t need to write xApp code
from the scratch, but can use xApp-framework, which is designed to facilitate and
rapidly build a full-fledged RIC xApps. The xApp-framework can be found
[xapp-frame] and a simple example-Xapp that illustrates how the framework
can be used is located at [example] The dependencies and prerequisites of xApp
development are also described in the above links.

https://gerrit.o-ran-sc.org/r/admin/repos/ric-plt/xapp-frame
https://gerrit.o-ran-sc.org/r/gitweb?p=ric-plt/xapp-frame.git;a=tree;f=examples;h=7b47b26096762ece758b9c7510fdd71d5a09703e;hb=HEAD

22

The common functions and interfaces that the xApp-framework provides

include:

• RESTful (new resources can be injected dynamically)

• RMR (with message filtering based on application rules)

• Database backend services (with configurable namespaces, etc)

• Watching and populating config-map changes in K8S environment

• Logging (via MDCLOG + tracing support in the future)

• ASN.1 decoding and encoding (only skeleton -¿ to be implemented)

The GO xApp Framework supports various essential components such:

– RESTful: HTTP services, health probes and injecting new resources
can be dynamically

– RMR client: Sending and receiving of RMR messages with message
filtering based on application rules). See [xx]

– DB client: Database backend services (with configurable namespaces,
etc) for SDL, RNIB and UENIB. See [xx]

– Config: Reading, watching and populating config-map changes in
K8S environment on runtime

– Logging and tracing: Generic system logging and tracing services (in
the future). See [xx]

– Metrics and statistics: Generating and publishing metrics to the met-
rics server (Prometheus interface used to collect (or “scrap”) metrics and
counters. See [xx]

– ASN.1 decoding and encoding (only skeleton -¿ to be implemented).
See [xx]

For more information about the xApp Framework and other used library
services, check [xapp-frame]

4.1.1 Getting Started – A simple example xApp

The following is a sample xApp that receives RMR messages, stores message
payload to SDL and echo the message back to the sender:

package main

import (

” g e r r i t . o−ran−sc . org / r / r i c −p l t /xapp−frame / pkg/ xapp ”

type SampleXapp struct {

)

https://gerrit.o-ran-sc.org/r/admin/repos/ric-plt/xapp-frame

23

{
∗ ∗ {

{

{
∗ {

{

appReady bool

}

func (e SampleXapp) Consume(rp xapp . RMRParams) (e r r error)
i f e r r := xapp . Sd l . Store (”myKey” , r . Payload) ; e r r != n i l

xapp . Logger . I n f o (” Sd l . Store f a i l e d with e r r o r : %v” , e r r)
}

i f ok := xapp . Rmr. SendMsg (r) ; ! ok

xapp . Logger . I n f o (”Rmr. SendMsg f a i l e d . . . ”)
}

}

func NewSampleXapp(appReady) SampleXapp
return &SampleXapp

appReady : appReady
}

}

func main ()

NewSampleXapp(true , f a l s e) . Run()
}

Detailed explanation of the above code:

We imported the package: ”gerrit.o-ran-sc.org/r/ric-plt/xapp-frame/pkg/xapp”.
Note! that GO initializes imported packages and executes init() function
in every package

We defined a GO struct called SampleXapp with only one Boolean field
appReady. The SampleXapp has only one method called Consume, which
is mandatory.

• We wrote the logic of the Consume method:

– it reads the payload from the message, stores the data to SDL using
xApp-framework SDL interface: xapp.Sdl.Store(”myKey”, r.Payload)

– ends back the message using xApp-framework RMR interface: xapp.Rmr.SendMsg(r)

We created an instance of SampleXapp struct by using pointer address
operator

Finally, we defined the main function. All applications in Go use main as
their entry point like C does

4.1.2 Compiling and running the sample xApp locally

Save the sample code as sample-xapp.go, build and run it locally using following
commands:

GO111MODULE=on GO ENABLED=0 GOOS=l i nux go build −a − i n s t a l l s u f f i x cgo −o sample−xapp sample−xa

. / sample−xapp −f c o n f i g / conf ig − f i l e . yaml

•

•

•

•

24

{

∗ ∗

4.1.3 Generating Docker image and running the image in RIC en-
vironment

¡ add here some basic stuff of how to compile and generate a docker image for
xApp, and run in RIC environement¿

4.2 C++ framework

The C++ framework allows the programmer to create an xApp object instance,
and to use that instance as the logic base. The xApp object provides a message
level interface to the RIC Message Router (RMR), including the ability to reg-
ister callback functions which the instance will drive as messages are received;
much in the same way that an X-windows application is driven by the window
manager for all activity. The xApp may also choose to use it’s own send/receive
loop, and thus is not required to use the callback driver mechanism provided by
the framework.

4.2.1 C++ Framework API

The C++ framework API consists of the creation of the xApp object, and invok-
ing desired functions via the instance of the object. The following paragraphs
cover the various steps involved to create an xApp instance, wait for a route
table to arrive, send a message, and wait for messages to arrive.

4.2.2 Creating the xApp instance

The creation of the xApp instance is as simple as invoking the object’s con-
structor with two required parameters:

port A C string (char *) which defines the port that RMR will open to listen for
connections.

wait A Boolean value which indicates whether or not the initialization process
should wait for the arrival of a valid route table before completing. When
true is supplied, the initialization will not complete until RMR has received
a valid route table (or one is located via the RMR_SEED_RT environment
variable).

The following code sample illustrates the simplicity of creating the instance
of the xApp object.

#i nc l ude <memory>
#i nc l ude < r i c x f c p p / xapp . hpp>
int main ()

std : : unique ptr <Xapp> xapp ;
char l i s t e n p o r t = (char) ” 4560 ” ; //RMR l i s t e n port

bool wait 4 table = true ; // wait f o r a route t a b l e

xapp = std : : unique ptr <Xapp>(

25

new Xapp(l i s t e n p o r t , wai t 4 table)) ;

}

From a compilation perspective, the following is the simple compiler invo-
cation string needed to compile and link the above program (assuming that the
sample code exists in a file called man_ex1.cpp).

g++ man ex1 . cpp −g −o man ex1 −l r i c x f c p p −l r m r s i −lpthread −lm

The above program, while complete and capable of being compiled, does
nothing useful. When invoked, RMR will be initialized and will begin listening
for a route table; blocking the return to the main program until one is received.
When a valid route table arrives, initialization will complete and the program
will exit as there is no code following the instruction to creeate the object.

4.2.3 Listening For Messages

The program in the previous example can be extended with just a few lines of
code to enable it to receive and process messages. The application needs to
register a callback function for each message type which it desires to process.
Once registered, each time a message is received the registered callback for the
message type will be invoked by the framework.

4.2.4 Callback Signature

As with most callback related systems, a callback must have a well known func-
tion signature which generally passes event related information and a ”user”
data pointer which was registered with the function. The following is the pro-
totype which callback functions must be defined with:

void cb name (Message& m, int mtype , int subid ,

int payload len , Msg component payload ,
void ∗ usr data) ;

The parameters passed to the callback function are as follows:

• m: A reference to the Message that was received.

mtype: The message type (allows for disambiguation if the callback is
registered for multiple message types).

• subid: The subscription ID from the message.

payload len: The number of bytes which the sender has placed into the
payload.

payload: A direct reference (smart pointer) to the payload. (The smart
pointer is wrapped in a special class in order to provide a custom destruc-
tion function without burdening the xApp developer with that knowledge.)

•

•

•

26

{

∗ ∗

user data: A pointer to user data. This is the pointer that was provided
when the function was registered.

To illustrate the use of a callback function, the previous code example has

been extended to add the function, register it for message types 1000 and 1001,
and to invoke the Run() function in the framework (explained in the next sec-
tion).

#i nc l ude <memory>
#i nc l ude < r i c x f c p p / xapp . hpp>
long m1000 count = 0 ; // message counters , one f o r each type

long m1001 count = 0 ;

// c a l l b a c k fu n ct ion t h a t w i l l in cre ase the ap p rop riate counter
void cbf (Message& mbuf , int mtype , int subid , int len ,

Msg component payload , void ∗ data) {

long ∗ counter ;

i f ((counter = (long ∗) data) != NULL) {

(∗ counter)++;
}

}

int main ()
std : : unique ptr <Xapp> xapp ;
char l i s t e n p o r t = (char) ” 4560 ” ;

bool wait 4 table = f a l s e ;

xapp = std : : unique ptr <Xapp>(

new Xapp(l i s t e n p o r t , wai t 4 table)) ;

// r e g i s t e r the same c a l l b a c k fu n ct ion f or both msg types
xapp−>Add msg cb (1000 , cbf , (void ∗) &m1000 count) ;
xapp−>Add msg cb (1001 , cbf , (void ∗) &m1001 count) ;

xapp−>Run(1) ; // s t a r t the c a l l b a c k d r i v e r
}

As before, the program does nothing useful, but now it will execute and
receive messages. For this example, the same function can be used to increment
the appropriate counter simply by providing a pointer to the counter as the user
data when the callback function is registered. In addition, a subtle change from
the previous example has been to set the wait for table flag to false. For an
xApp that is a receive only application (never sends) it is not necessary to wait
for RMR to receive a table from the Route Manager.

4.2.5 Registering A Default Callback

The xApp may also register a default callback function such that the function
will be invoked for any message that does not have a registered callback. If the
xAPP does not register a default callback, any message which cannot be

•

27

mapped to a known callback function is silently dropped. A default callback is
registered by providing a message type of xapp->DEFAULT_CALLBACK.

4.2.6 The Framework Callback Driver

The Run() function within the Xapp object is invoked to start the callback driver,
and the xApp should not expect the function to return under most circumstances.
The only parameter that the Run() function expects is the number of threads to
start. For each thread requested, the framework will start a listener thread which
will allow received messages to be processed in parallel. By supplying a value
greater than one, the xApp must ensure that the callback functions are thread
safe as it is very likely that the same callback function will be invoked
concurrently from multiple threads.

4.2.7 Sending Messages

It is very likely that most xApps will need to send messages and will not operate in
”receive only” mode. Sending the message is a function of the message object
itself and can take one of two forms:

• Replying to the sender of a received message

Sending a message (routed based on the message type and subscription
ID)

When replying to the sender, the message type and subscription ID are
not used to determine the destination of the message; RMR ensures that the
message is sent back to the origin xApp. The xApp may still need to change the
message type and/or the subscription ID in the message prior to using the reply
function. To provide for both situations, two reply functions are supported by
the Message object as illustrated with the following prototypes.

bool Send response (int mtype , int subid , int re s po ns e l e n ,

std : shared ptr <unsigned char> r esponse) ;

bool Send response (int re s po ns e l e n ,

std : : shared ptr <unsigned char> r esponse) ;

In the first prototype the xApp must supply the new message type and
subscription ID values, where the second function uses the values which are
currently set in the message. Further, the new payload contents, and length, are
supplied to both functions; the framework ensures that the message is large
enough to accommodate the payload, reallocating it if necessary, and copies the
response into the message payload prior to sending. Should the xApp need to
change either the message type, or the subscription ID, but not both, the
NO_CHANGE constant can be used as illustrated below.

msg−>S end response (Message : : NO CHANGE, Message : : NO SUBID,

pl l e ng th , (unsigned char ∗) payload) ;

•

28

∗

In addition to the two function prototypes for Send_response() there are two

additional prototypes which allow the new payload to be supplied as a shared
smart pointer. The other parameters to these functions are identical to those
illustrated above, and thus are not presented here.

The Send_msg() set of functions supported by the Message object are iden-
tical to the Send_response() functions and are shown below.

bool Send msg (int mtype , int subid , int payload len ,

std : : shared ptr <unsigned char> payload) ;
bool Send msg (int mtype , int subid , int payload len ,

unsigned char payload) ;
bool Send msg (int payload len ,

std : : shared ptr <unsigned char> payload) ;

bool Send msg (int payload len , unsigned char ∗ payload) ;

Each send function accepts the message, copies in the payload provided, sets
the message type and subscription ID (if provided), and then causes the message
to be sent. The only difference between the Send_msg() and Send_response()
functions is that the destination of the message is selected based on the mapping
of the message type and subscription ID using the current routing table known
to RMR.

4.2.8 Direct Payload Manipulation

For some applications, it might be more efficient to manipulate the payload
portion of an Xapp Message in place, rather than creating it and relying on a
buffer copy when the message is finally sent. To achieve this, the xApp must
either use the smart pointer to the payload passed to the callback function,
or retrieve one from the message using Get_payload() when working with a
message outside of a callback function. Once the smart pointer is obtained, the
pointer’s get() function can be used to directly reference the payload (unsigned
char) bytes.

When working directly with the payload, the xApp must take care not to
write more than the actual payload size which can be extracted from the Message
object using the Get_available_size() function.

When sending a message where the payload has been directly altered, and
no extra buffer copy is needed, a NULL pointer should be passed to the Message
send function. The following illustrates how the payload can be directly ma-
nipulated and returned to the sender (for simplicity, there is no error handling if
the payload size of the received message isn’t large enough for the response
string, the response is just not sent).

Msg component payload ; // smart r e f er ence

int p l s i z e ; // max s i z e of payload

payload = msg−>G et payload () ;
p l s i z e = msg−>G e t a v a i l a b l e s i z e () ;

i f (s n p r i n t f ((char ∗) payload . get () , p l s i z e ,

29

”Msg Received \n”) < p l s i z e) {

msg−>S end response (M TYPE, SID , s t r l e n (raw pl) , NULL) ;
}

4.2.9 Sending Multiple Responses

It is likely that the xApp will wish to send multiple responses back to the pro-
cess that sent a message that triggered the callback. The callback function may
invoke the Send_response() function multiple times before returning. After
each call, the Message retains the necessary information to allow for a subse-
quent invocation to send more data. It should be noted though, that after the
first call to {Send_response() the original payload will be lost; if necessary, the
xApp must make a copy of the payload before the first response call is made.

4.2.10 Message Allocation

Not all xApps will be ”responders,” meaning that some xApps will need to
send one or more messages before it can expect to receive any messages back.
To accomplish this, the xApp must first allocate a message buffer, optionally
initializing the payload, and then using the message’s Send_msg() function to
send a message out. The framework’s Alloc_msg() function can be used to
create a Message object with a desired payload size.

4.2.11 Framework Provided Callbacks

The framework itself may provide message handling via the driver such that the
xApp might not need to implement some message processing functionality.
Initially, the C++ framework will provide a default callback function to handle
the RMR based health check messages. This callback function will assume that
if the message was received, and the callback invoked, that all is well and will
reply with an OK state. If the xApp should need to override this simplistic
response, all it needs to do is to register it’s own callback function for the health
check message type.

5 Examples

In this section we will present actual code from example xApps.

5.1 Hello World xApp

The hello world xapp demonstrates how an xapp uses the o1, a1, and e2 inter-
faces. specifically, the xapp uses a ”hello world sm” and implements a ”hello
world” a1 policy.

30

5.2 rmr dump xapp

The RMR dump application is an example built on top of the C++ xApp
framework to both illustrate the use of the framework, and to provide a useful
diagnostic tool when testing and troubleshooting xApps.

The RMR dump xApp isn’t a traditional xApp inasmuch as it’s goal is to
listen for message types and to dump information about the messages received
to the TTY much as tcpdump does for raw packet traffic. The full
source code, and Makefile, are in the examples directory of the C++
repo (link?).

When invoked, the RMR dump program is given one or more message
types to listen for. A callback function is registered for each, and
the framework Run() function is invoked to drive the process. For
each recognised message, and depending on the verbosity level supplied
at program start, information about the received message(s) is written
to the TTY. If the forwarding option, -f, is given on the command line,
and an appropriate route table is provided, each received message is
forwarded without change. This allows for the insertion of the RMR
dump program into a flow, however if the ultimate receiver of a message
needs to reply to that message, the reply will not reach the original
sender, so RMR dump is not a complete "middle box" application.

5.2.1 Code for rmr dump

The following is the code for this xAPP. Several sections, which provide
logic unrelated to the framework, have been omitted. The full code

is in the framework repository.

include <stdio .h>
include < unistd .h>
include <atomic >

include " ricxfcpp / xapp. hpp"

/*
Inform atio n that the callback needs outside
of what is given to it via params on a call
by the fra m e w ork .

*/
typedef struct {

int vlevel; // verbosity level
bool forward ; // if true , m essage is forw arded
int stats_freq ; // header / stats after n m essages
std :: atomic <long > pcount; // m essages processed std
:: atomic <long > icount; // m essages ignored
std :: atomic <int > hdr; // nu m ber of m essages before next header

} cb_info_t;

// --

31

// Du m p bytes to tty.

void dump(unsigned const char* buf , int len) {
// omitted for brevity

}

/*
generate stats when the hdr count reaches 0. Only one active
thread will ever see it be exactly 0 , so this is thread safe.

*/
void stats(cb_info_t & cbi) {

int curv; // current stat trigger value

curv = cbi. hdr --;

if(curv == 0) { // stats when we reach 0
fprintf(stdout , " ignored : % ld processed : % ld\ n",

cbi. icount. load (), cbi. pcount. load ());
if(cbi. vlevel > 0) {

fprintf(stdout , "\ n %5 s %5 s %2 s %5 s\ n",
" MTYPE ", " SUBID ", " ST", " PLLEN ");

}

cbi. hdr = cbi. stats_freq ; // reset m ust be last
}

}

// Callback registere for all msgs we are interested in
void cb1 (Message & mbuf , int mtype , int subid , int len ,

Msg_component payload , void* data) {
cb_info_t* cbi;
long total_count ;

if((cbi = (cb_info_t *) data) == NULL) {
return ;

}

cbi - > pcount ++;

stats(* cbi); // gen stats & header if needed

if(cbi - > vlevel > 0) {
fprintf(stdout , " <RD > % -5 d % -5 d %02 d % -5 d \ n",

mtype , subid , mbuf. Get_state (), len);

if(cbi - > vlevel > 1) {

dump(payload . get(), len > 64 ? 64 : len);
}

}

if(cbi - > forward) {
// forward with no change to len or payload

mbuf. Send_msg (Message :: NO_CHANGE , NULL);
}

}

/*
registered as the default callback ; it counts the

32

m essages that we aren ’t giving details about .

*/
void cbd(Message & mbuf , int mtype , int subid , int len ,

Msg_component payload , void* data) {

cb_info_t* cbi;

if((cbi = (cb_info_t *) data) == NULL) {
return ;

}

cbi - > icount ++;
stats(* cbi);

if(cbi - > forward) {
// forward with no change to len or payload

mbuf. Send_msg (Message :: NO_CHANGE , NULL);
}

}

int main(int argc , char ** argv) {
std :: unique_ptr <Xapp > x;
char* port = (char *) " 4560 ";
int ai = 1; // arg processing index
cb_info_t* cbi;
int mtype;

int nthreads = 1;

cbi = (cb_info_t *) malloc (sizeof(* cbi));
cbi - > pcount = 0;
cbi - > icount = 0;

cbi - > stats_freq = 10;

// very sim ple flag parsing (no error / bou n ds checking)

while(ai < argc) {
// code om mited for brevity

ai ++;
}

cbi - > hdr = cbi - > stats_freq ;

fprintf(stderr , " <RD > listening on port: % s\ n", port);

// create xapp , wait for route table if forw arding

x = std :: unique_ptr < Xapp >(new Xapp(port , cbi - > forward));

// register callback for each type on the com m an d line
while(ai < argc) {

mtype = atoi(argv[ai]);
ai ++;
fprintf(stderr , " <RD > capturing messages for type % d\ n", mtype);
x- > Add_msg_cb (mtype , cb1 , cbi);

}

x- > Add_msg_cb (x- > DEFAULT_CALLBAC K , cbd , cbi); // register default cb

fprintf(stderr , " <RD > starting driver\ n");
x- > Run(nthreads); // return fro m Run () is not expected

}

33

Acknowledgments

We would like to thank the RIC team at AT&T and Nokia for the information
and suggestions.

References

[1] S. Daniels, ‘‘Ric message routing.’’ Available at

 https://gerrit.o-ran-sc.org/r/admin/repos/ric-plt/lib/rmr

[2] Logging, ‘‘Best practices.’’ Available at

https://wiki. o-ran-sc.org/display/ORAN/Logging.

[3] RIC Platform, ‘‘Logging.’’ Available at
https://gerrit.o-ran-sc.org/r/admin/repos/com/log.

https://gerrit.o-ran-sc.org/r/admin/repos/com/golog

https://gerrit.o-ran-sc.org/r/admin/repos/com/pylog

[4] L. Walkin, ‘‘Asn1c.’’ Available at http://lionet.info/asn1c.

[5] ASN, ‘‘Git repo.’’ Available at https://github.com/vlm/asn1c.

https://gerrit.o-ran-sc.org/r/admin/repos/ric-plt/lib/rmr
https://wiki./
https://wiki.o-ran-sc.org/display/ORAN/Logging
https://gerrit.o-ran-sc.org/r/admin/repos/com/log
https://gerrit.o-ran-sc.org/r/admin/repos/com/golog
https://gerrit.o-ran-sc.org/r/admin/repos/com/pylog
http://lionet.info/asn1c
https://github.com/vlm/asn1c

