Sylva

Presentation

February 2023

A fundamental step to Telco Cloud & Edge homogenization and sustainability

Every cloud has a SYLVA lining

— Content

Market analysis

CSPs began their journey in Telco Cloud and edge almost a decade ago. However, some challenges remain to solve.

Historical Model doesn't fit with

multivendor approach

#Shift to a common

Cloud Layer

Operators are increasingly threatened by hackers* #Invest in Security

functions

New Network Functions require
Cloud native infra and
distributed Cloud (O-RAN, 5G
core, CDN)
#Shift from VNF to CNF

Continuous Innovation &
Service Automation to shorten
the TTM and reduce OpEx
Telco cloud and edge
automation

Mission statement

The main carriers in Europe, together with network function providers, initiated the Sylva project to address Telco and Edge use cases

The project objectives are:

To release a cloud software framework tailored for telco and edge requirements that address the technical challenges of the industry layer of this ecosystem

To develop a reference implementation of the cloud software framework and create a validation program for such implementations

Opportunities we want to unblock

	Technology	Business	Ecosystem	Regulation / Security
Current Threats for Telcos	Technological backwardness	Proprietary solutions Lock In	Fragmentation of solutions	Strong regulation
	Slow innovation	High prices	Hyperscallers entry	High cyber risk
Opportunities Through Sylva	Open-source instead of	Reduce cost (open source,	Common Telco Cloud	Compliance with European
	proprietary solutions	mutualization)	technology	regulation
	Simplify & automate the operational model	Interoperability (validation program, large adoption)	Convergence of the telco cloud layer	High security standards

Why Sylva? Content Our approach What we deliver 3

The five technical pillars

Network Performance to answer to CNF requirements and performance

Telco features : SR-IOV, DPDK, Low latency, Specific CNI CaaS on BareMetal

Distributed cloud

BM Automation : Declarative approach & Gitops to manage thousands of heterogenous nodes MultiK8S : Optimized lifecycle Management of many K8S

Clusters in DC

Best in Class Security Design

Answer Telco grade requirements

Open source and standardized API

Support multi-Vendor CNF & boost market adoption

Energy efficiency

Measure & Optimize to limit Energy Consumption

Sylva

Summary of workgroups under Sylva TSC

#01 Telco Cloud Stack

> Mathieu Rohon Orange

#04 Energy Efficiency

> S Kannan Nokia

#02 Validation Center

> Luis Velarde Telefónica

#05
Communication &
Adoption

Andre Antunes Celfocus #03 EUCS Security

Théophile Debauche Orange

#06
Evolution of
Governance

Théophile Debauche Orange

Technical Steering Committee with Orange, DT, TIM, TEF, Vodafone, Nokia & Ericsson at the board

Sylva Co-Chairman: Giuseppe Ferraris (TIM) & Guillaume Nevicato (Orange)

Content

Sylva adoption benefits

Telecom Operators

- · Siloed approach that leads to higher costs
- · High TTM for new services
- Different reference architectures among Telcos that delays the innovation

Network Function Providers

 Heterogeneous cloud layer that increases the complexity of delivering the network functions SW releases to different Telecom Operators

System Integrators

- High risk projects due to difficult integration and support
- Lack of compliancy with regulation & high security standards

HW/infra providers

- · Lack of Telco-grade capabilities visibility
- Custom development

Sylva Future State

- Common cloud layer and reference architecture for CaaS among Telcos that will reduce costs
- Create a cloud continuum and guarantees compatibility among operators in the MEC Federation initiative (Operator Platform)
- Create a SYLVA reference NF validation process that decreases the TTM of new services, market prospect of NF, and the certification cost/time of NF.
- Homogenous cloud layer that enables the build once deploy many, in different Telecom Operators
- Reduce cost and time in certification in Operators' infra by leveraging the validation process on SYLVA as a reference
- Provide an environment to test the Telco-grade capabilities required by the NF
- Systems interoperability and compliance with regulation & high-security standards
- New business opportunity to:
 - Create a distribution out of SYLVA;
 - Provide support for deployments of SYLVA in Operators
 - Provide a validation service to NFs
- Obtain information on the Telco-grade capabilities expected by Operators from a CaaS and on NFs that must be certified in their own CaaS solution
- Reduce cost in testing by incorporating capabilities integrated as OpenSource in SYLVA
- Showing the **HW can enable the capabilities** required for a horizontal platform
- Standardize developments using SYLVA

Open-Source ecosystem

Project Synergies

- Anuket (RA2/RC2) covers the specifying, integrating and verifying Telco-specific stacks and the validation of Telco applications
 - Sylva will leverage RA2 and cover requirements specifics to European Telcos
 - Sylva will **contribute** back specific extensions to Anuket
 - **Note:** Anuket is requirements driven, while Sylva is implementation driven. Also, Sylva is intended to be an implementation of Anuket as RC2 compliant.
 - CNCF provides necessary components such as OSS projects (K8S) and validation programs (CNF)
 - Leverage K8S as part of the software framework
 - Contribute extensions that address Telco needs
 - **Build** on top of CNF Validation program
- The O-RAN Software community develops many of the workloads that will use the telco CaaS
 - Address requirements of O-RAN workloads (e.g. synchronization cards)
 - Provide feedback to the O-RAN-SC and O-RAN workgroups
- Sylva is **based** on open-source components such as GitOps, Service Mesh and will **integrate** with the software coming from the LF Networking and Edge umbrella projects
- Sylva will align with the specifications and recommendations of organizations like Gaia-X (Secure and sovereign data management), MITRE and ENISA (Security). It will provide feedback, as necessary, to these organization for further improvements of the specifications.

Sylva architecture

To address such use case as 5GCore Distributed UPF, CDN or Open RAN, Sylva will provide an architecture able to manage from Central to far edge site

*this is an example on how SYLVA could be deployed in a multi cluster environment

SR-IOv

×

Gitops Tool: Flux

K8s cluster manager: CAPI

Coordinate with Rancher engineering teams:

- For ClusterAPI rke2 bootstrap provider: https://github.com/rancher-sandbox/cluster-api-provider-rke2
- For BareMetal management with Metal3: https://github.com/rancher-sandbox/baremetal

Tooling

The **sylva-core** (https://gitlab.com/sylva-projects/sylva-core) project provides tools to let you choose what will compose your Sylva stack. It is hosting:

- scripts to operate the stack
- a **sylva-unit helm chart** used to deploy flux objects
- some value examples used to build the sylva stack that fits your need

Validation centre: Scope

Validation program has two parts CNF validation & Derivative stack validation

Sylva aims to release an Open Source cloud software framework integrating the capabilities required for telco and edge workloads.

Sylva uses as a reference the requirements from existing organizations (e.g.: Anuket, O-Ran, Enisa, ...)

Main Benefits

- · Interoperability, no lock-in;
- NF portfolio validated in the validation program;
- Compliancy with regulation and high security standards.

CNF validation (Ongoing)

- Demonstrate CNFs can work on top of SYLVA stack
- First official validations against Sylva release v1
- Run over a validation platform (reference implementation of a Sylva stack release)
- Not a complete certification (onboarding + basic functional test)
- Leverage Anuket assets (CNCF test suit, functest)

Derivative stack (distribution) validation (To be started)

- Demonstrating distributions include the capabilities required
- Will leverage the tests defined for each Sylva release
- Will make use of "dummy CNFs" or "validated CNFs" to test the capabilities
- Leverage Anuket assets (k8s_conformance testing, xtest)
- Distributions must exist in order to validate them, only after Sylva v1 is released

Validation center: CNF validation process

CNF provider support

Validation center: Time plan summary

Sylva Partner adoption

A huge reach in a few months since the public launch

What we have done in 2022

Sylva

What will be done in 2023

Cloud Features

OS: Ubuntu

BM

BM automation (CAPI, Metal3)

Storage: Cinder (Openstack)

Deployment Model

Pilot CaaS on BM

CAPV (Capi on Vsphere) / Vsphere CSI

CAPO (Capi on Openstack)

Security -WG03

First EUCS conformity evaluation (sovereign cloud

OS: Suse OS

Acceleration & Perf

SRIOV, DPDK, NUMA, Kubevirt with DPDK Pilot

Deployment Model

Workload Cluster Management
CaaS on BM (enhanced LCM on BM)
CAPD Workload Cluster (new Dev&CI)

Storage: Longhorn

LAN Automation

Exploration Netw Modelisation and L2 VLAN automation (SONIC ? ENO ?, etc ...)

Monitoring: per Cluster then federated Solution **RBAC implementation**

Security -WG03

EUCS requirements: IAM, SOC, Hardening

additional distro /which use cases

OS Management

RealTime Module, explore Immutable OS

Acceleration & Perf

PTP & Exploration on FPGA in K8S

BM

BM automation (CAPI, Metal3)

Storage: NAS

Security - WG03

Isolation pilot : Kata container / Liquid Metal

SOC Logging mechanism

First EUCS conformity evaluation (sovereign cloud)

Sylva

Thank you

