The O1 Simulator offers support for demonstrating the O-RAN-SC E-Release Network Slicing use case proposed by Radisys. This is available in the nts-ng-o-ran-du docker image, starting with version 1.4.3.

Features

1. Support for o-ran-du-hello-world.yang model developed by the OAM project, containing slicing information
2. Support for VES PM stndDefined messages
3. Support for VES Subscription and PM Job creation

Usage

Details about how to start a simulated O-DU and how to use the Network Slicing use case features are below. A video demonstrating these capabilities was presented in this meeting. The recording is available there.

For starting the OAM Controller and VES Collector, a minimal SMO deployment is needed. This can be started using the instructions from here and ignoring the NonRT-RIC and ONAP-Policy steps. Please replace the version of the simulators in the ".env" file with the current 1.4.3 version.

Starting

A simulated O-DU can be started via docker-compose. The following .env and docker-compose.yaml files can be used to start such a simulator.

```
.env

NEXUS3_DOCKER_REPO=nexus3.o-ran-sc.org:10004/o-ran-sc/

NTS_BUILD_VERSION=1.4.3
CU_PREFIX=111
DU_PREFIX=${CU_PREFIX}1
IPv6_ENABLED=true
SSH_CONNECTIONS=1
TLS_CONNECTIONS=0
#NTS_HOST_IP=10.20.11.121
NTS_HOST_IP=2001:db8:1::1
NTS_HOST_BASE_PORT=50000
NTS_HOST_NETCONF_SSH_BASE_PORT=50000
NTS_HOST_NETCONF_TLS_BASE_PORT=52000
NTS_HOST_TRANSFER_FTP_BASE_PORT=54000
NTS_HOST_TRANSFER_SFTP_BASE_PORT=56000
NTS_NF_MOUNT_POINT_ADDRESSING_METHOD=docker-mapping
NTS_NF_STANDALONE_START_FEATURES="datastore-populate ves-heartbeat ves-file-ready ves-pnf-registration netconf-call-home web-cut-through"

SDN_CONTROLLER_PROTOCOL=http
SDN_CONTROLLER_IP=2001:db8:1:50::23
SDN_CONTROLLER_PORT=8181
SDN_CONTROLLER_CALLHOME_PORT=4335
SDN_CONTROLLER_CALLHOME_IP=2001:db8:1:50::23
SDN_CONTROLLER_USERNAME=admin
SDN_CONTROLLER_PASSWORD=Kp8bJ4SXszM0WXlhak3eHlcse2gAw84vaoGGMJvUy2U

VES_COMMON_HEADER_VERSION=7.2.1
VES_ENDPOINT_PROTOCOL=https
VES_ENDPOINT_IP=2001:db8:1:50::27
VES_ENDPOINT_PORT=8443
VES_ENDPOINT_AUTH_METHOD=basic-auth
VES_ENDPOINT_USERNAME=sample1
VES_ENDPOINT_PASSWORD=sample1
```

docker-compose.yaml
version: '3.8'
x-common_env: &common_env
 IPv6_ENABLED: ${IPv6_ENABLED}
 SSH_CONNECTIONS: ${SSH_CONNECTIONS}
 TLS_CONNECTIONS: ${TLS_CONNECTIONS}
 NTS_NF_MOUNT_POINT_ADDRESSING_METHOD: ${NTS_NF_MOUNT_POINT_ADDRESSING_METHOD}

 NTS_HOST_IP: ${NTS_HOST_IP}
 NTS_HOST_BASE_PORT: ${NTS_HOST_BASE_PORT}
 NTS_HOST_NETCONF_SSH_BASE_PORT: ${NTS_HOST_NETCONF_SSH_BASE_PORT}
 NTS_HOST_NETCONF_TLS_BASE_PORT: ${NTS_HOST_NETCONF_TLS_BASE_PORT}
 NTS_HOST_TRANSFER_FTP_BASE_PORT: ${NTS_HOST_TRANSFER_FTP_BASE_PORT}
 NTS_HOST_TRANSFER_SFTP_BASE_PORT: ${NTS_HOST_TRANSFER_SFTP_BASE_PORT}

 SDN_CONTROLLER_PROTOCOL: ${SDN_CONTROLLER_PROTOCOL}
 SDN_CONTROLLER_IP: ${SDN_CONTROLLER_IP}
 SDN_CONTROLLER_PORT: ${SDN_CONTROLLER_PORT}
 SDN_CONTROLLER_CALLHOME_IP: ${SDN_CONTROLLER_CALLHOME_IP}
 SDN_CONTROLLER_CALLHOME_PORT: ${SDN_CONTROLLER_CALLHOME_PORT}
 SDN_CONTROLLER_USERNAME: ${SDN_CONTROLLER_USERNAME}
 SDN_CONTROLLER_PASSWORD: ${SDN_CONTROLLER_PASSWORD}

 VES_COMMON_HEADER_VERSION: ${VES_COMMON_HEADER_VERSION}
 VES_ENDPOINT_PROTOCOL: ${VES_ENDPOINT_PROTOCOL}
 VES_ENDPOINT_IP: ${VES_ENDPOINT_IP}
 VES_ENDPOINT_PORT: ${VES_ENDPOINT_PORT}
 VES_ENDPOINT_AUTH_METHOD: ${VES_ENDPOINT_AUTH_METHOD}
 VES_ENDPOINT_USERNAME: ${VES_ENDPOINT_USERNAME}
 VES_ENDPOINT_PASSWORD: ${VES_ENDPOINT_PASSWORD}

x-du_env: &du_env
 NTS_NF_STANDALONE_START_FEATURES: "datastore-populate ves-heartbeat ves-file-ready ves-pnf-registration web-cut-through"

x-nf: &common_nf
 stop_grace_period: 5m
 cap_add:
 - SYS_ADMIN
 - SYS_PTRACE

services:
 ntsim-ng-o-ran-du-1:
 <<: *common_nf
 image: "$NEXUS3_DOCKER_REPO/nts-ng-o-ran-du:$NTS_BUILD_VERSION"
 container_name: ntsim-ng-o-ran-du-${DU_PREFIX}
 hostname: O-DU-${DU_PREFIX}
 environment:
 <<: *common_env
 <<: du_env

networks:
 default:
 external:
 name: oam

Please adjust the values in the docker-compose.yaml according to your needs: e.g. specify the correct VES Endpoint IP address, SDN Controller IP address, rename or remove the oam network, as applicable to your specific host.

Starting can be done via:

docker-compose up -d
This will start a docker container containing the o-ran-sc-du-hello-world YANG model. The user can then start a NETCONF session to this device (default is port 830 and the IP address can be the one of the docker container).

Configure VES details

NETCONF

After the simulated O-DU is up and running, the VES subscription details can be configured. These are part of the o-ran-sc-du-hello-world model. An example edit-config NETCONF operation that configures VES endpoint details:

```xml
<?xml version="1.0" encoding="utf-8"?>
<rpc xmlns="urn:ietf:params:xml:ns:netconf:base:1.0" message-id="">
  <edit-config>
    <target>
      <running/>
    </target>
    <config>
      <duhw:network-function xmlns:duhw="urn:o-ran-sc:yang:o-ran-sc-du-hello-world">
        <duhw:subscription-streams>
          <duhw:id>stream-1</duhw:id>
          <duhw:administrative-state>unlocked</duhw:administrative-state>
          <duhw:user-label>stream1</duhw:user-label>
          <duhw:ves-endpoint-protocol>https</duhw:ves-endpoint-protocol>
          <duhw:ves-endpoint-auth-method>basic-auth</duhw:ves-endpoint-auth-method>
          <duhw:ves-endpoint-ip>10.20.11.121</duhw:ves-endpoint-ip>
          <duhw:ves-endpoint-port>8443</duhw:ves-endpoint-port>
          <duhw:ves-endpoint-username>sample1</duhw:ves-endpoint-username>
          <duhw:ves-endpoint-password>sample1</duhw:ves-endpoint-password>
        </duhw:subscription-streams>
      </config>
    </edit-config>
  </rpc>
```

RESTCONF

After the simulated O-DU is mounted in the SDN Controller (this should be done automatically via VES pnRegistry), the VES details could also be configured via RESTCONF.

```bash
### @name setSubscriptionStream  
# baseUrl needs to be replaced by the OAM IP address and port of the SDN Controller RESTCONF interface  
# node needs to be replaced by the name of the O-DU (e.g. O-DU-1211)  
```

PM Job creation

NETCONF

Generating VES PM stdDefined events can be done by adding PM Job entries. An example edit-config NETCONF operation that adds a new PM job:
<xml version="1.0" encoding="utf-8"?>
<rpc xmlns="urn:ietf:params:xml:ns:netconf:base:1.0" message-id="">
 <edit-config>
 <target>
 <running/>
 </target>
 <config>
 <duhw:network-function xmlns:duhw="urn:o-ran-sc:yang:o-ran-sc-du-hello-world">
 <duhw:id>pm1</duhw:id>
 <duhw:administrative-state>unlocked</duhw:administrative-state>
 <duhw:user-label>pm-1</duhw:user-label>
 <duhw:granularity-period>30</duhw:granularity-period>
 <duhw:stream-target>stream-1</duhw:stream-target>
 </duhw:performance-measurement-jobs>
 </duhw:network-function>
 </config>
 </edit-config>
</rpc>

- The `granularity-period` specifies the amount of seconds between two "gathered" PM values, and it will be also the number of seconds between two generated VES events.
- `stream-target` points to a previously created stream (describing to a VES endpoint)

RESTCONF

```bash
### @name setPerformanceMeasurementJobs
# baseUrl needs to be replaced by the OAM IP address and port of the SDN Controller RESTCONF interface
# node needs to be replaced by the name of the O-DU (e.g. O-DU-1211)

cat payload.json

{"performance-measurement-jobs":{"id":"pm-1","administrative-state":"unlocked","user-label":"pm","job-tag":"my-job-tag","performance-metrics":[]}}

```

PM Job deletion

NETCONF

A PM Job can be deleted, thus the generation of new VES PM events associated with that job will be stopped. An example edit-config NETCONF operation that deletes a PM job:
<?xml version="1.0" encoding="utf-8"?><rpc xmlns="urn:ietf:params:xml:ns:netconf:base:1.0" message-id="">
 <edit-config>
 <target>
 <running/>
 </target>
 <config>
 <duhw:network-function xmlns:duhw="urn:o-ran-sc:yang:o-ran-sc-du-hello-world">
 <duhw:id>pm1</duhw:id>
 </duhw:performance-measurement-jobs>
 </duhw:network-function>
 </config>
 </edit-config>
</rpc>

@name deletePerformanceMeasurementJobs
baseUrl needs to be replaced by the OAM IP address and port of the SDN Controller RESTCONF interface
node needs to be replaced by the name of the O-DU (e.g. O-DU-1211)

Example VES PM stndDefined

This is an example JSON VES PM stndDefined message generated by the O-DU Simulator:
"event": {
 "commonEventHeader": {
 "domain": "stndDefined",
 "eventId": "pm1_1638984365",
 "eventName": "stndDefined_performanceMeasurementStreaming",
 "eventType": "performanceMeasurementStreaming",
 "sequence": 24,
 "priority": "Low",
 "reportingEntityId": "",
 "reportingEntityName": "O-RAN-O-DU-1",
 "sourceId": "",
 "sourceName": "O-RAN-O-DU-1",
 "startEpochMicrosec": 1638984365000000,
 "lastEpochMicrosec": 1638984370000000,
 "nfNamingCode": "SIM-O-DU",
 "nfVendorName": "O-RAN-SC SIM Project",
 "stndDefinedNamespace": "o-ran-sc-du-hello-world-pm-streaming-oas3",
 "timeZoneOffset": "+00:00",
 "version": "4.1",
 "vesEventListenerVersion": "7.2.1"
 },
 "stndDefinedFields": {
 "stndDefinedFieldsVersion": "1.0",
 "data": {
 "id": "pm1_1638984365",
 "start-time": "2021-12-08T17:26:05.0Z",
 "administrative-state": "unlocked",
 "operational-state": "enabled",
 "user-label": "pm-1",
 "job-tag": "",
 "granularity-period": 5,
 "measurements": [{"measurement-type-instance-reference": "/o-ran-sc-du-hello-world:network-function/distributed-unit-functions[id='O-DU-1211']/cell[id='cell-1']/supported-measurements[performance-measurement-type='user-equipment-average-throughput-downlink']","value": 12355,"unit": "kbit/s"}]
 }
 }
}