
Release J: rApp Manager

Introduction
Architecture
rApp Data Model
Integrations

ACM
DME
SME

State Transitions
rApp States
rApp Instance States

Flows
rApp flow

Create rApp
Delete rApp

rApp Instance flow
Create rApp Instance
Deploy rApp Instance
Undeploy rApp Instance
Delete rApp Instance

Sample rApp package structure
ACM (Files/Acm)
DME (Files/Dme)
SME (Files/Sme)

CSAR File Generation
Deployment Instructions

Pre-requisites
Environment setup
Installation

Installed Components
Istio components
Cert Manager components
Kserve components
ACM Components
NONRTRIC Components

Troubleshooting
Uninstallation

Introduction
The rApp Manager is a lifecycle management service for rApps. It gets the rApp as an ASD formatted package and lifecycle manages it based on it
instance configuration. It uses ONAP ACM for lifecycle management operations and it integrates with other components for managing the rApp.

The ASD package contains the details required to create and integrate the required services/components. Each ASD package contains only one rApp and
one rApp can have any number of rApp instances.

Source code repository : https://gerrit.o-ran-sc.org/r/gitweb?p=nonrtric%2Fplt%2Frappmanager.git;a=summary

Architecture

https://gerrit.o-ran-sc.org/r/gitweb?p=nonrtric%2Fplt%2Frappmanager.git;a=summary

rApp Data Model

Integrations
The rApp Manager is integrated with the following components to support lifecycle managing the rApp.

ACM

Automation Composition Management (ACM) is a framework that supports Life Cycle Management of Automation Compositions. It supports deployment,
monitoring, update and removal of Automation Compositions en-bloc, allowing users to manage their features, services, and capabilities as single logical
units. More details about ACM can be found .here

ACM-R has the ability to support an unlimited number of participants and all the participants can be configured through the configuration in the rApp
package.

List of participants used by rApp manager sample rApp.

A1PMS Participant - It interacts with A1PMS of NONRTRIC. It is capable of lifecycle managing A1PMS service.
Kserve Participant - It interacts with Kserve. It is capable of lifecycle managing Kserve inference service.
Kubernetes Participant - It interacts with Helm/Kubernetes. It is capable of lifecycle managing Helm charts. It expects the helm charts to be
available in the mentioned repository as it doesn't handle the helm chart creation in the chart repository.
DME Participant - It interacts with DME(ICS) of NONRTRIC. It is capable of lifecycle managing DME entities.

ACM composition and instance details can be provided as part of the rApp package and the package structure can be found .here

DME

The DME(Information Coordination Service (ICS)) is a generic service that maintains data subscriptions. Its main purpose is to decouple data consumers
and data producers in a multi vendor environment. A data consumer does not need to know anything about the producers of the data. More details about
DME can be found .here

It is integrated with rApp manager to enable the rApp to produce/consume specific type of data(Information Type in DME terms).

Information type, and Data producer/consumer information can be provided as part of rApp package and the package structure can be found .here

SME

https://docs.onap.org/projects/onap-policy-parent/en/latest/clamp/acm/acm-architecture.html#introduction
https://docs.o-ran-sc.org/projects/o-ran-sc-nonrtric-plt-informationcoordinatorservice/en/latest/overview.html

1.

2.

3.

4.

The CAPIF stands for Common API framework and it was developed by 3GPP to enable a unified Northbound API framework across 3GPP network
functions, and to ensure that there is a single and harmonized approach for API development. More details about SME can be found .here

It is integrated with rApp manager to enable the rApp to expose/access/discover endpoints.

Service exposure/access related configurations can be provided as part of rApp package and the package structure can be found .here

State Transitions

rApp States

The rApp lifecycle contains 4 states. The state and transitions are as follows,

COMMISSIONED
rApp get created in this state and once the
DEPRIMING is completed

PRIMING
This is a transition state. rApp will be in this
state once the PRIMING requested for rApp

PRIMED
rApp will be in this state once the PRIMING is
completed. In this state rApp instances can be
created

DEPRIMING
This is a transition state. rApp will be
in this state once the DEPRIMING requested for rApp

rApp Instance States

The rApp Instance lifecycle contains 4 states. The state and transitions are as follows,

https://docs.o-ran-sc.org/projects/o-ran-sc-nonrtric-plt-sme/en/latest/overview.html

1.

2.

3.

4.

UNDEPLOYED
rApp instance gets created in this state and
once the rApp Instance undeploy is completed

DEPLOYING
This is the transition state. rApp instance will
be in this state once DEPLOY is requested

DEPLOYED
rApp instance will be in this state once the
rapp instance deployment is completed.

UNDEPLOYING
This is a transition state. rApp instance will
be in this state once UNDEPLOY requested for
rApp instance

Flows

rApp flow

Create rApp

1.

2.

3.

4.

5.

6.

7.

8.

9.

10.

11.

12.

13.

14.

API user creates
rApp by sending
rApp package

rApp Manager
validates the
rApp

rApp Manager
stores the rApp
in the file
system if the
rApp is valid

API user
provided with
the status of
rApp creation.

API user request
to Prime the rApp

rApp Manager
uploads the helm
artifacts to
chart museum
server

rApp Manager get
helm artifacts
upload status

rApp Manager
fetches the ACM
composition from
rApp package and
creates the ACM
composition in
ACM-R

rApp Manager
gets the ACM
composition
creation status
from ACM-R

rApp Manager
request ACM-R to
prime the ACM
composition

rApp Manager
gets the ACM
composition
priming status
from ACM-R

rApp Manager
checks with DME
for the unknown
information type
from rApp package

rApp Manager get
the information
type
availability
from DME

API user
provided with
the status of
rApp priming

Delete rApp

1.

2.

3.

4.

5.

6.

7.

8.

9.

API user request
to Deprime rApp

rApp Manager
request ACM-R to
deprime the ACM
composition

rApp Manager get
the status of
ACM composition
depriming.

rApp Manager
requests ACM-R
to delete the
ACM composition

rApp Manager
gets the status
of ACM
composition
deletion

API user
provided with
the deprime rApp
status.

API user request
to delete the
rApp

rApp Manager
validates that
the rApp is in
COMMISSIONED
state and
there is no rApp
Instances are
available.

API User
provided with
delete rApp
status

rApp Instance flow

Create
rApp
Instance

1.

2.

1.

2.

3.

API
user
request
to
create
rApp
Instanc
e with
the
resourc
e
details
from
rApp
package

API
user
get
the
rApp
instanc
e
creatio
n
response

Deploy
rApp
Instance

API
user
request
to
deploy
rApp
instance

rApp
Manager
fetches
the
rApp
package
from
file
system
and
fetches
the
resourc
es
mention
ed in
the
rApp
instanc
e.

rApp
Manager
request
ACM-R
with
the
necessa
ry
details
from
rApp
package
to
Instant
iate
ACM
instance

4.

5.

6.

7.

8.

9.

10.

11.

rApp
Manager
gets
instant
iate
ACM
instanc
e
response

rApp
Manager
request
ACM-R
to
deploy
ACM
instance

ACM-R
deploys
the
A1PMS
instanc
e if
it is
configu
red in
the
ACM
instance

ACM-R
gets
the
A1PMS
deploym
ent
status

ACM-R
deploys
the
Kserve
instanc
e if
it is
configu
red in
the
ACM
instance

ACM-R
gets
the
Kserve
deploym
ent
status

ACM-R
deploys
the
Kuberne
tes
instanc
e if
it is
configu
red in
the
ACM
instance

ACM-R
gets
the
Kuberne
tes
deploym
ent
status

12.

13.

14.

15.

16.

17.

ACM-R
deploys
the
DME
instanc
e if
it is
configu
red in
the
ACM
instance

ACM-R
gets
the
DME
deploym
ent
status

rApp
Manager
gets
ACM
deploym
ent
status

rApp
Manager
request
SME to
create
the
entitie
s in
rApp
instance

SME
creates
the
entitie
s
provide
d by
rApp
Manager

rApp
manager
get
the
respons
e of
SME
entitie
s
creation

18.

1.

2.

3.

4.

API
user
provide
d with
the
status
of
rApp
instanc
e
deploym
ent.
rApp
Manager
combine
s
the
status
of ACM
deploym
ent
and
SME
deploym
ent to
provide
the
rApp
instanc
e
status.

Undeploy
rApp
Instance

API
user
request
to
undeplo
y rApp
instance

rApp
Manager
fetches
the
rApp
and
rApp
instanc
e
details

rApp
Manager
request
ACM-R
to
undeplo
y the
ACM
instance

ACM-R
undeplo
y the
A1PMS
instanc
e if
it is
already
deployed

5.

6.

7.

8.

9.

10.

11.

12.

13.

ACM-R
gets
the
A1PMS
undeplo
y
status

ACM-R
undeplo
y the
Kserve
instanc
e if
it is
already
deployed

ACM-R
gets
the
Kserve
undeplo
y
status

ACM-R
undeplo
y the
Kuberne
tes
instanc
e if
it is
already
deployed

ACM-R
gets
the
Kuberne
tes
undeplo
y
status

ACM-R
undeplo
y the
DME
instanc
e if
it is
already
deployed

ACM-R
gets
the
DME
undeplo
y
status

rApp
Manager
get
ACM
undeplo
y
status

rApp
Manager
request
ACM-R
to
delete
the
ACM
instance

14.

15.

16.

17.

18.

1.

2.

rApp
Manager
get
respons
e of
ACM
instanc
e
deletion

rApp
Manager
request
SME to
delete
SME
entities

SME
deletes
the
entitie
s
created
as
part
of rApp

rApp
Manager
get
the
respons
e of
SME
entitie
s
deletion

API
user
get
the
status
of
undeplo
y rApp
instance

Delete
rApp
Instance

API
user
request
rApp
Manager
to
delete
rApp
Instance

API
user
gets
delete
rApp
instanc
e
response

Sample rApp package structure

The sample rApp package structure shown below and the location of relevant files for each integration is provided.

ACM (Files
/Acm)

Definition
- Files/Acm
/Definition
(Only one
file)

Instances
- Files/Acm
/instances

DME (Files
/Dme)

Consumer
Information
Types -
Files/Dme
/consumerin
fotypes

Producer
information
Types
- Files
/Dme
/producerin
fotypes

Information
Consumers
- Files/Dme
/infoconsum
ers

Information
Producers
- Files/Dme
/infoproduc
ers

SME (Files
/Sme)

Providers
Functions
- Files/Sme
/providers

Service
Api
- Files
/Sme
/serviceapis

Invokers -
Files/Sme
/invokers

CSAR File Generation

This packaging structure is a prototype and subject to change

CSAR file generator is available in the rAppmanager repository . here (master)

"rappmanager/sample-rapp-generator" folder contains sample rApp packages.

The contents of the rApp (Eg. rapp-all, rapp-hello-world...) directory can be modified as required and the package can be generated as shown below,

Linux: Generate rApp package

> ./generate.sh <FOLDER_NAME>

Windows: Generate rApp package

> ./generate.bat <FOLDER_NAME>

This will generate a package named " <FOLDER_NAME> ". It can be renamed as required..csar

This generated package can be used with rApp Manager to create rApp.

Deployment Instructions
The scripts for the deployments of rApp Manager and its dependent components are available .here (i-release)

Pre-requisites

Kubernetes Cluster (V1.24.6)
GIT

Environment setup

The installation scripts shown installs all the required components. It installs chart museum server where the installation script is running and it will get here
whitelisted in ACM. All sample rApps uses similar addresses for referring the charts in asd.yaml and Kubernetes instance configuration.

Separate chart museum can be used here and It should be whitelisted in ACM manually and the server IP/FQDN should be used in the rApp package
configuration such as asd.yaml and Kubernetes instance configuration (Chart museum server should be reachable from rApp manager and

).Kubernetes-Participant

ACM components should be configured with couple of other components for the participants to work.

In case some of the installation is already setup or not set by the installation scripts, the below environment variables can be used to set the configurations
ACM through installation scripts.

Variable Name Description Default Value

A1PMS_HOST Address of the A1PMS.

It will be accessed from A1PMS
participant.

http://policymanagementservice.nonrtric:
9080

These scripts are specifically designed for a fresh environment. Some tweaks may be required to run these in an environment where there are
some existing installations

Ignore the below variables if the entire environment is being setup by the following installation scripts

https://gerrit.o-ran-sc.org/r/gitweb?p=nonrtric/plt/rappmanager.git;a=tree;f=sample-rapp-generator;h=f6a0fa0aa442f904f82f08e4847574f22957b365;hb=refs/heads/master
https://gerrit.o-ran-sc.org/r/gitweb?p=nonrtric/plt/rappmanager.git;a=tree;f=scripts/install;h=refs/heads/i-release;hb=refs/heads/i-release

CHART_REPO_GET_URI URI to get the charts.

It will be used by Kubernetes participant

and sample rApp generator.

http://IP_ADDRESS:8879/charts

IP_ADDRESS: IP of the host in which

the installation scripts are running.

CHART_REPO_POST_URI URI to upload the charts.

It will be used by sample rApp generator.

http://IP_ADDRESS:8879/charts/api/charts

IP_ADDRESS: IP of the host in which

the installation scripts are running.

Installation

All components can be installed using the command below,

>./install-all.sh

Individual components can be installed using the commands below,

To install the tools required for other installer scripts.

>./install-base.sh

To install the ACM, and it's related components.

>./install-acm.sh

To install the Kserve, and it's related components.

>./install-kserve.sh

To installs the NONRTRIC components.

>./install-nonrtric.sh

Installed Components

The below components should be up and running for the rApp Manager integrations to work properly.

Istio components

Dev mode of installation can be done by providing an argument " " to the installation scripts above. install-all.sh devdev Eg.,

Dev mode installation uses snapshot images for rApp manager and DME participant.

http://IP_ADDRESS:8879

Cert Manager components

Kserve components

ACM Components

NONRTRIC Components

1.

Troubleshooting

If Kserve installation failed or end up in the below state after " ", Try run " " script after " "install-all.sh patch-kserve.sh install-all.sh

Uninstallation

To uninstall all the components

>./uninstall-all.sh

	Release J: rApp Manager

