
RMR_nng_perf
RMR vs NNG Sending Performance

RMR uses NNG's push/pull model for TCP connections between application endpoints. This model is the only NNG model which allows multiple
concurrent processes to create connections to an application using a single port (e.g. 123.45.67.99:4560). To address expectations both from the
perspective of the capabilities of NNG in this mode, and the overhead of RMR two sets of send/receive applications were used to exchange messages and
the message rates were measured. This page presents the observations when testing with these applications.

Environment

The sender applications attempt to send 1 million messages measuring the elapsed time between start and finish. For each message a buffer is allocated,
filled with a static payload and sent. If the message send fails for any reason the application records it as a "drop" and continues; no retries at the
application level. For the NNG based sender, NNG was allowed to block for up to 1ms, while the RMR based sender configured RMR with a send timeout
of 1 (allowing RMR to retry blocked sends up to 1000 times each). RMR 1.10.0 was used for the RMR tests.

NNG Send Rates

The following are three representative trials with the NNG only send/receive pair. The sender transmitted 1 million messages in round robin fashion to 5
receivers:

NNG send rates

sender_1 | <MSEND> finished attempted 1000000 messages drops=0 elapsed=19230 ms == 52002 msg/sec
sender_1 | <MSEND> finished attempted 1000000 messages drops=0 elapsed=19290 ms == 51840 msg/sec
sender_1 | <MSEND> finished attempted 1000000 messages drops=0 elapsed=19246 ms == 51975 msg/sec

RMR Send Rates

Using a route table which directed 5 different message types to specific receivers, the following are representative results of the trials:

RMR send results

sender_1 | <A2SEND> finished attempted: 1000000 good: 999985 bad: 0 drops: 15 rate: 38461
sender_1 | <A2SEND> finished attempted: 1000000 good: 999980 bad: 0 drops: 20 rate: 37037
sender_1 | <A2SEND> finished attempted: 1000000 good: 999976 bad: 0 drops: 24 rate: 38461
sender_1 | <A2SEND> finished attempted: 1000000 good: 999987 bad: 0 drops: 13 rate: 38461

When a route table was used which directed three message types across six different receivers the results were the same.

Reduced Max RMR Retries

If RMR was configured with a send timeout of 0, preventing RMR from retrying a blocked send more than 100 times, the same the number of "retries"
reported by RMR to the application increased (expected). The following are representative of these trials:

RMR sends timeout == 0

sender_1 | <A2SEND> finished attempted: 1000000 good: 999435 bad: 0 drops: 565 rate: 38461
sender_1 | <A2SEND> finished attempted: 1000000 good: 999442 bad: 0 drops: 558 rate: 38461
sender_1 | <A2SEND> finished attempted: 1000000 good: 999469 bad: 0 drops: 531 rate: 40000
sender_1 | <A2SEND> finished attempted: 1000000 good: 999436 bad: 0 drops: 564 rate: 38461

The conclusion here is that allowing RMR to retry blocked sends for 1000 times has minimal effect on message rate, while improving the number of times
that the application must deal with a "retry" condition.

Threads

NNG divides session processing across many threads, so many so that for an application with even 6 connections it is impossible to pin threads to a CPU
without overlapping. This is illustrated with a screen capture from top while one of the above RMR tests was executing:

top info

 PID USER PR NI VIRT RES SHR S %CPU %MEM TIME+ COMMAND
39398 root 20 0 1727732 2968 2092 R 361.1 0.0 1:44.54 apples_sender2
38938 root 20 0 5140052 3204 2364 S 92.0 0.0 0:28.37 apples_receiver
38567 root 20 0 5140052 3320 2480 S 91.7 0.0 0:28.12 apples_receiver
39168 root 20 0 5140052 3300 2464 S 91.7 0.0 0:28.19 apples_receiver
39247 root 20 0 5140052 3144 2308 S 91.7 0.0 0:28.14 apples_receiver
38800 root 20 0 5140052 3276 2436 S 91.4 0.0 0:28.16 apples_receiver
39012 root 20 0 5140052 3292 2452 S 90.7 0.0 0:28.03 apples_receiver

When multiple sending applications are pushing messages to the same application a similar top capture shows that NNG will process each connection on
a separate thread and will span CPUs:

top multiple senders

 PID USER PR NI VIRT RES SHR S %CPU %MEM TIME+ COMMAND
41908 root 20 0 5074516 3180 2344 R 324.5 0.0 0:31.75 apples_receiver
42192 root 20 0 1072372 2928 2104 R 162.6 0.0 0:17.33 apples_sender2
42266 root 20 0 1072372 2900 2076 R 160.6 0.0 0:14.36 apples_sender2

O/S Scheduling and/or CPU Affiliation

While no efforts were made to pin any of the application threads to CPUs, it was obvious during single sender/receiver tests that either O/S scheduling or
CPU "luck" made a difference in overall throughput as illustrated below with some message rates exceeding the pure NNG application's rate.

Single send/receive

sender_1 | <A2SEND> finished attempted: 1000000 good: 999070 bad: 0 drops: 930 rate: 43478
app0_1 | =app0= finished received: 999070 rate: 34450 msg/sec

sender_1 | <A2SEND> finished attempted: 1000000 good: 998847 bad: 0 drops: 1153 rate: 47619
app0_1 | =app0= finished received: 998847 rate: 39953 msg/sec

sender_1 | <A2SEND> rmr timeout value was set to 1
sender_1 | <A2SEND> finished attempted: 1000000 good: 998681 bad: 0 drops: 1319 rate: 50000
app0_1 | =app0= finished received: 998681 rate: 41611 msg/sec

sender_1 | <A2SEND> finished attempted: 1000000 good: 998596 bad: 0 drops: 1404 rate: 50000
app0_1 | =app0= finished received: 998596 rate: 39943 msg/sec

sender_1 | <A2SEND> finished attempted: 1000000 good: 999093 bad: 0 drops: 907 rate: 43478
app0_1 | =app0= finished received: 999093 rate: 35681 msg/sec

sender_1 | <A2SEND> finished attempted: 1000000 good: 998339 bad: 0 drops: 1661 rate: 52631
app0_1 | =app0= finished received: 998339 rate: 43406 msg/sec

sender_1 | <A2SEND> finished attempted: 1000000 good: 999116 bad: 0 drops: 884 rate: 38461
app0_1 | =app0= finished received: 999116 rate: 33303 msg/sec

Conclusions

The impact on message rate when using RMR is caused by a couple of factors:

overhead needed in RMR to map a message type/subscription ID pair to a route table entry, and then to select an endpoint from the entry
RMR spinning when a send blocks rather than being able to wait on a pollable event as NNG is capable of

The maximum possible message rate through NNG seems to be capped at just over 50K messages/second. The theory is that this limit is in part due to
the locking needed to coordinate the asynchronous I/O model that NNG uses (as opposed to Nanomsg), and is needed to coordinate activities between
threads.

	RMR_nng_perf

