
RMR_receive_perf
RMR Receiver Performance (on top of NNG)
Using two RMR/NNG based sending applications, and a varied number of receiving applications an attempt to qualify the maximum receive rate of an
application. Testing from this point of view is underway; the following are some preliminary observations.

Prelim results

sender2_1 | <A2SEND> finished attempted: 1000000 good: 981279 bad: 0 drops: 18721 rate: 20833
sender1_1 | <A2SEND> finished attempted: 1000000 good: 980455 bad: 0 drops: 19545 rate: 21276
app0_1 | =app0= finished received: 1961734 rate: 38465 msg/sec

sender1_1 | <A2SEND> finished attempted: 1000000 good: 961262 bad: 0 drops: 38738 rate: 15151
sender2_1 | <A2SEND> finished attempted: 1000000 good: 960658 bad: 0 drops: 39342 rate: 14925
sender3_1 | <A2SEND> finished attempted: 1000000 good: 959527 bad: 0 drops: 40473 rate: 14925
app0_1 | =app0= finished received: 2881447 rate: 39471 msg/sec

sender1_1 | <A2SEND> finished attempted: 1000000 good: 962591 bad: 0 drops: 37409 rate: 14925
sender2_1 | <A2SEND> finished attempted: 1000000 good: 961256 bad: 0 drops: 38744 rate: 14925
sender3_1 | <A2SEND> finished attempted: 1000000 good: 961673 bad: 0 drops: 38327 rate: 14925
app0_1 | =app0= finished received: 2885520 rate: 39527 msg/sec

As expected, the more sending applications are targeting a single receiver, the higher each sender's drop rate will be. We assume that the cause is the in
ability to keep up on the receiver side, and TCP buffers are being exhausted.

	RMR_receive_perf

