
RMR Using Tracing Data
The message which RMR places on the wire consists of a small 
header of meta-data, and the user application payload. Inside 
of the header is optionally a tracing data field, the size of 
which is user application controlled. The trace field is 
intended to carry information generated by a non-RMR library 
to measure information about the message as it passes from 
application to application. The nature of the trace data need 
not be actual trace data; it would be possible for an 
application to define it's own data layout such that it might 
be able to record one-way and round trip latency between the 
applications.

Summary

Briefly, these functions exist in RMR to manage the trace 
information: 

rmr_init_trace()
Initialise tracing such that each subsequently 
allocated message buffer will have a trace area of 
the indicated size allocated by default. 

rmr_set_trace()
Copy trace data from a user's buffer to a message, 
reallocating the message if the current trace area is 
not large enough. 

rmr_get_trace()
Copy trace data from a message to a user supplied 
buffer. 

rmr_trace_ref()
Get a pointer to the trace area in the message buffer 
for direct access. 

rmr_get_trlen()
Return the length of the trace data allocated in a 
message (doesn't indicate if it was populated). 

Trace Data Size

The trace data size is variable in order to allow for any 
tracing library, or the user application's own data, to fit. 
There are several ways to specify the length of the trace 
data reserved when a message header is allocated; these are 
described below.

Default Allocation 
Once RMR has been initialised via a call to rmr_init(), and 
the user application has an RMR contex, the default trace 
data length may be set using the rmr_init_trace() function. 
This function accepts the RMR context and the default trace 
data length; following this call, all messages allocated will 
by default be created with the trace data field.

Allocate On Write 
The rmr_set_trace() function accepts a message buffer, a 
pointer to the trace data, and the trace data length, then 
copies the trace data into the message. If the allocated 
space in the message is not large enough for the data the 
message is reallocated, and the trace space for the message 
is extended to allow the data to fit. 

This is a single time allocation, and results in a message 
clone which can be inefficient as the payload bytes must also 
be copied. However, this may be the only option available if 
the user application must use the return to sender function 
on a message which does not have enough (any) trace data 
space allocated.

Setting Trace Data



The preferred method of writing trace data into a message is 
to use the rmr_set_trace() function. This accepts the data 
and copies it into the message. This is preferred as the RMR 
function ensures that there isn't a data overrun should more 
bytes be provided than the message can handle. (The function 
reallocates the message in this case.) 

It is possible for the user application to get a direct 
reference (pointer) to the trace data and to use that to set 
the data. The risk is that should the user application cause 
a "buffer overflow" the results when attempting to send the 
message, or parse the message on receipt, might not be 
desired.

Reading Trace Data

The rmr_get_trace() function will copy the trace data from 
the provided message into a buffer provided by the user 
application. This is useful if the trace data must out live 
the message buffer that transported it in.

Trace Data Reference

While more risky, in some situations having a pointer to the 
trace data in the message header will be the optimal means to 
read or write the data. The rmr_trace_ref() function accepts 
a pointer to a message buffer, and returns a pointer to the 
trace data within that buffer. Optionally, the user 
application may provide a pointer to an integer which the 
function will populate with the trace data length. If there 
is no trace data in the message, a nil pointer is returned. 

It is the user application's responsibility when writing 
directly to the trace data in a message buffer, that it does 
not write more bytes than the trace data length.

Trace Data Length

The rmr_get_trlen() accepts a pointer to an RMR message 
buffer and will return the length of the trace data 
contained.

Example

As an example, consider a pair of cooperating applications 
which exchange messages in a request/response manner and wish 
to track both one-way and round trip latencies. The 
applications might define a structure with four timestamp 
structs (e.g. struct timespec), and set the default trace 
length created in each message to be the size of the 
structure. 

After message allocation, the sender would set the first 
timstamp at the desired point in the code, and send the 
message normally. When the message arrives, the receiving 
application would get the reference to the trace data from 
the message and populate the second, receipt, timestamp. 
Before replying to the message, the receiver would populate 
the third timestamp to track both the internal processing 
time, and to mark the start of the sending process. Finally, 
when the response arrives at the original sender, it does the 
same "receipt marking" into the fourth timestamp. The 
application is then free to examine and record the various 
latencies.


	RMR Using Tracing Data

