
Logging (not tracing)

Logging from C
Logging from Go
Logging from Python
MDC (Mapped Diagnostic Context)
Severity Levels
Fields in the log entry
JSON
CSV (proposal for future development)
Key-value pairs (proposal for future development)

Logging from C

Gerrit repo: https://gerrit.o-ran-sc.org/r/admin/repos/com/log

RIC provides a C library for logging: mdclog. The library implements thread-local MDC management and formatting of the logs into the correct JSON
format.

Logging from Go

The native Golang version of RIC logging library is in Gerrit: https://gerrit.o-ran-sc.org/r/admin/repos/com/golog

The Go version of the library works like the C version, except that the MDC values are not thread but logger instance specific. The mdclog C library can
also be used from Go, but note that the thread-local MDCs do not work with Go goroutines. An example of how to use the mdclog C library from Go is
shown below.

package main

/*
#cgo CFLAGS: -I/usr/local/include
#cgo LDFLAGS: -lmdclog
#
#include <mdclog/mdclog.h>
void my_log_write(mdclog_severity_t severity, const char *msg) {

 mdclog_write(severity, "%s", msg);
}
*/
import "C"
import "fmt"

func mylog(severity C.mdclog_severity_t, msg string) {

 C.my_log_write(severity, C.CString(msg))
}

func main() {

 C.mdclog_mdc_add(C.CString("Weather"), C.CString("Sunny"))
 C.mdclog_mdc_add(C.CString("Temperature"), C.CString("15.5"))
 mylog(C.MDCLOG_INFO, fmt.Sprintf("Weather report log"))
}

Logging from Python

Gerrit repo: You can also install the python library using pip: https://gerrit.o-ran-sc.org/r/admin/repos/com/pylog python3 -m pip install mdclogpy

RIC provides a Python library for logging: mdclogpy. The Python version of the library works like the Golang version, i.e. the MDC values are logger
instance specific.

MDC (Mapped Diagnostic Context)

MDC is a list of key-value pairs the RIC components can define to be included in their logs. It is currently rarely used in RIC.

MDC
key

MDC value (type,
range, list of
values, format, ...)

Description Components
using the
MDC

Comments

https://gerrit.o-ran-sc.org/r/admin/repos/com/log
https://gerrit.o-ran-sc.org/r/admin/repos/com/golog
https://gerrit.o-ran-sc.org/r/admin/repos/com/pylog

Weather Possible values: , sunny
, , cloudy rainy snowy

Weather type included in every log made by the Weather
Manager.

Weather
Manager xApp

This is an example.

Temper
ature

Value range from
-100.0 to 100.0 with
one decimal. Example:
15.5

Temperature (Celsius degrees) included in every log
made by the Weather Manager.

Weather
Manager xApp

This is an example.

time yyyy-MM-dd HH:mm:ss.
SSS

Human readable timestamp. Note that the timezone can
be derived from comparing this value against the ts
millisecond timestamp in the same log entry.

E2 Manager Example:

{"crit":"INFO","ts":1560266556006,"id":"
E2Manager","msg":"#rmrCgoApi.Init - RMR router
has been initiated","mdc":{"time":"2019-06-11 15:
22:36.006"}}

Severity Levels

The following severity levels are used in RIC:

DEBUG - information useful for debugging
INFO - informational message related to normal operation
WARNING - indication of a potential error
ERROR - error condition

Fields in the log entry

ts – Timestamp, number of milliseconds since Unix Epoch (i.e. 1970-01-01 00:00:00 +0000 (UTC)), set by the logging library
crit – Severity level of the log, given by the application process: DEBUG, INFO, WARNING, ERROR
id – the name of the process, set by the logging library
msg – log message given by the application process
mdc – a list of key value pairs, both strings, unique key names, given by the application process

The logging library writes the logs to stdout. Each log entry is one line. All line feed characters, as well as non-printable characters, are replaced with a
space by the logging library. In addition, characters having a special meaning in the output format are escaped by the logging library. The logging library
supports only JSON format, only. Having named fields is flexible from post-processing point of view and, as we might have new requirements from the
applications in later releases, allows us to easily add, remove or modify the fields to the logs in the future, if needed. If other formats are needed, we can
add them as configurable options in the future versions. The format of each field (e.g. timestamp) can also be made configurable in the future versions of
the logging library, if needed. No separate “markers”, which are defined in the ONAP specification (https://wiki.onap.org/pages/viewpage.action?

), are supported. Reasoning is that this is a tracing concept and needs to be pageId=28378955#ONAPApplicationLoggingSpecificationv1.2(Casablanca)
covered by a tracing solution such as OpenTracing. It will cover the functionality of having specific ENTRY, EXIT, INVOKE etc marked logs. In the
following examples, the process has logged an INFO log with message “This is an example log” and with two key-value pairs "key1"="value1" and "key2"="
value with a space". The one-line log has been divided into several lines for readability.

JSON
{
 "ts": 1550045469,
 "crit": "INFO",
 "id": "applicationABC",
 "msg": "This is an example log",
 "mdc":
 {
 "key1": "value1",
 "key2": "value with a space"
 }
}

CSV (proposal for future development)

With a comma as a separator in this example. The separator could be made configurable.

1550045469,
INFO,
applicationABC,
This is an example log,
key1=value1 key2=value with a space

Key-value pairs (proposal for future development)

With a colon as a separator in this example. The separator could be made configurable.

https://wiki.onap.org/pages/viewpage.action?pageId=28378955#ONAPApplicationLoggingSpecificationv1.2(Casablanca)-TextOutput
https://wiki.onap.org/pages/viewpage.action?pageId=28378955#ONAPApplicationLoggingSpecificationv1.2(Casablanca)-TextOutput

timestamp=1550045469:
severity=INFO:
logger=applicationABC:
message=This is an example log:
key1=value1:
key2=value with a space

	Logging (not tracing)

