Cherry - <<SMO>> ModelCatalog
SMO - Model Catalog

The Model Catalog provides a list of Applications that are onboarded to the SMO after delivery of an "Application Package" from a vendor. It presents a

Model-View-Controller for management of the data.

For the purposes of this implementation we will assume the following:

® The Controller will be RESTful from the service endpoint of {apiRoot}/ModelCatalog/v1l. The initial REST resource tree is show below. Additional
resources may be added to represent aspect of ML Applications which have additional data elements.

7 .../modelCatalog/v1
fapplications
/<applicationVersionID>
fapplicationServiceModels
/<serviceModellD>
IserviceResources
/<resourcelD>
— Jdescriptor

—EpolicyTypes
/<PolicyTypelD>
—=|_fdata Feeds
/<dataFeedID>
— /publishes
L /<publicationID>
— Jrequiredlmages

—'=|_r’i mages
/<imagelD>
@startsalt
scale 1.5
T

+.../modelCatalog/vl

++/applications
+++/<applicationVersionID>
++++/applicationServiceModels
+++++/<serviceModellD>
++++++/serviceResources
+++++++/<resourcelD>
++++++++/descriptor
++++++++/instanceDeploymentVariables
++++++++/instanceApplicationConfigurationSchema
++++++++/policy Types
+++++++++/<Policy TypelD>
++++++++/dataFeeds
+++++++++/<dataFeedID>
++++++++/publishes
+++++++++/<publicationID>
++++++++/requiredimages

++/images

+++/<imagelD>

}

}
@endsalt

— linstanceDeploymentVariables
— linstanceApplicationConfigurationSchema

® The Model is represented in the class diagram below

@ SeniceResource

rescurcelD : string
rescarceType : string
rescurce’endor © string
rescarceNams : string
rescurce’\/ersion : string

deploymentDescriptor :
descriptoryarableOverrides | 'I'l.?lull

- mtring
policyTypes : PolicyTypei]

dataFesds : DataFesd]]

publications : Publications(]
requiredimages ; imageiD{]

@startuml

Class Application {
applicationVersionID : string
vendor : string
applicationName : string
version : string
serviceModels : ServiceModel[]
state : string
revisionID : string

}

Class ServiceModel {
serviceModellD : string
modelName : string
modelDescroption : string
resources : ServiceResource[]

}

Class ServiceResource {
resourcelD : string
resourceType : string
resourceVendor : string
resourceName : string
resourceVersion : string
deploymentDescriptor : DeploymentDescriptor
descriptorVariableOverrides : Tuple[]
applicationConfigurationSchema : string
policyTypes : PolicyType[]
dataFeeds : DataFeed[]
publications : Publications[]
requiredimages : ImagelD[]

}

Class Tuple {
key : string
value : string

}

Class DataFeed {
sharedDataName : string
mandatory : boolean

}

Class Publication {
sharedDataName : string
mandatory : boolean

}

Class PolicyType {
policySchema : string
policyStatusSchema : string

}

Class DeploymentDescriptor {
descriptorType : string
descriptor : string

}

Application "1" *-- "1..*" ServiceModel

ServiceModel "1" *-- "1..*" ServiceResource
ServiceResource "1" *-down- "1" DeploymentDescriptor
ServiceResource "1" *-down- "0..*" Tuple
ServiceResource "1" *-down- "0..*" PolicyType
ServiceResource "1" *-down- "0..*" DataFeed
ServiceResource "1" *-down- "0..*" Publication

@enduml

® The View will be JSON.

The Application record in the Model Catalog follows a Stateful lifecycle. The State can be updated with a partial update (PUT) as long as the current
revisionID is supplied as a query parameter. Upon a successful update the revisionID will be changed by the system to a newly generated value.

The valid values for State are "VALIDATED", "TRAINING_REQUIRED", and "AVAILABLE". The state transitions allowed are:

(VALIDATED

)

mon-validated packaga from being supplied to the cataloging step at is diffarent from the

The validaled patkage is sequasterad imo the ¢alalag. This protecls the process kom a
ane provided on the validation step

// & ML
f.-

(

AVAILABLE

This is an application inwhich the Run-Time can create a configuration Tor.

Howirndd, Wi My N d B consider raining itdrason count a5 afer a Ratrainng Required

configuration is created, addiional raindng right becoms required
a delarmination naads b0 occur a5 FFS fwe inmlidate existing configuration [
whith raises a question on "RUNNING" instances. Or do we allow the
deployrment of any iseration Mat reaches the AVAILABLE state

Training Complste

@startuml

[*] -> VALIDATED
VALIDATED : The validated package is sequestered into the catalog. This protects the process from a

VALIDATED : non-validated package from being supplied to the cataloging step that is different from the
VALIDATED : one provided on the validation step.

VALIDATED -down-> TRAINING_REQUIRED : ML detected
VALIDATED -> AVAILABLE : No ML

TRAINING_REQUIRED -> AVAILABLE : Training Complete
AVAILABLE -> TRAINING_REQUIRED : Retraining Required

TRAINING_REQUIRED

TRAINING_REQUIRED : During training multiple training iterations may be applied.
TRAINING_REQUIRED : Therefore the count returned from training may increment by
TRAINING_REQUIRED : more than one. How we manage the availablity for different
TRAINING_REQUIRED : trained instances is FFS. For now only the latest trained
TRAINING_REQUIRED : version is "AVAILABLE".

AVAILABLE :
AVAILABLE :
: configuration is created, additional training might become required
AVAILABLE :
: which raises a question on "RUNNING" instances. Or do we allow the
AVAILABLE :

AVAILABLE

AVAILABLE

@enduml

This is an application in which the Run-Time can create a configuration for.
However, we may need to consider training iteration count as after a

a determination needs to occur as FFS if we invalidate existing configuration

deployment of any iteration that reaches the AVAILABLE state.

wachd
h

(TRAMING_RECQUIRED

Traindng ltevaton is wacked. s infiadoad with @ zero a1 validation
During traindng muliple raining ibtraions may b applied
Thiarafods e count rebamed feom raindng may incramsent by
migra than ong. How wae manags the avallablity for different
irxined instances is FFS. For now only the labest frained

wafsian % “ANVAILABLE

: Training lteration is tracked. It is initialized with a zero at validation.

	Cherry - <<SMO>> ModelCatalog

