
O-RAN OAM simulation

Network Topology Simulator (NTS)
Description

Overview
NTS Manager

Detailed information
about the YANG
attributes

Configuration
Status
RPCs

Simulated Device
NETCONF Endpoints

Usage
Building the images
Starting the NTS Manager
Using the NTS Manager
Starting a simulated device

Troubleshooting
No simulated devices are
starting

Release notes
version 0.6.5
version 0.6.4
version 0.6.1
version 0.5.1

Network Topology Simulator (NTS)
The Network Topology Simulator is a framework that allows simulating devices that expose a
management interface through a NETCONF/YANG interface and VES interface.

Description

Overview

The NETCONF/YANG management interface is simulated, and any valid YANG models can be loaded
by the framework to be exposed. The term 'valid yang' refers to the O-RAN YANG Guidelines, which
basically is a reference to the RFC8047 - Guidelines for Authors and Reviewers of Documents

 .Containing YANG Data Models

Random data is generated based on the specific models, such that each simulated device presents
different data on its management interface.

The NTS Manager can be used to specify the simulation details and to manage the simulation
environment at runtime.

The NTS framework is based on several open-source projects:

Netopeer2
libnetconf2
libyang
sysrepo - all of these are used for the implementation of the NETCONF Server, both in the NTS
Manager and in each simulated device
cJSON - used to create the JSON payloads for talking with the simulation framework
pyang - used to create random data from the YANG models that are exposed

Each simulated device is represented as a docker container, where the NETCONF Server is running.
The creation and deletion of docker containers associated with simulated devices is handled by the NTS
Manager. The NTS Manager is also running as a docker container and exposes a NETCONF/YANG
interface to control the simulation.

NTS Manager

The purpose of the NTS Manager is to ease the utilization of the NTS framework. It enables the user to
interact with the simulation framework through a NETCONF/YANG interface. The user has the ability to
modify the simulation parameters at runtime and to see the status of the current state of the NTS. The
NETCONF/YANG interface will be detailed below.

module: network-topology-simulator
+--rw simulator-config!
| +--rw simulated-devices? uint32
| +--rw mounted-devices? uint32
| +--rw netconf-call-home? boolean
| +--rw notification-config
| | +--rw fault-notification-delay-period* uint32
| | +--rw ves-heartbeat-period? uint32
| | +--rw is-netconf-available? boolean
| | +--rw is-ves-available? boolean
| +--rw controller-details
| | +--rw controller-ip? inet:ip-address
| | +--rw controller-port? inet:port-number
| | +--rw netconf-call-home-port? inet:port-number
| | +--rw controller-username? string
| | +--rw controller-password? string
| +--rw ves-endpoint-details
| +--rw ves-endpoint-ip? inet:ip-address
| +--rw ves-endpoint-port? inet:port-number
| +--rw ves-endpoint-auth-method? authentication-method-type
| +--rw ves-endpoint-username? string
| +--rw ves-endpoint-password? string
| +--rw ves-endpoint-certificate? string
| +--rw ves-registration? boolean
+--ro simulator-status
+--ro simulation-usage-details
| +--ro running-simulated-devices? uint32

https://tools.ietf.org/html/rfc8407
https://tools.ietf.org/html/rfc8407
https://github.com/CESNET/Netopeer2
https://github.com/CESNET/libnetconf2
https://github.com/CESNET/libyang
https://github.com/sysrepo/sysrepo
https://github.com/DaveGamble/cJSON
https://github.com/mbj4668/pyang

| +--ro running-mounted-devices? uint32
| +--ro ssh-connections? uint32
| +--ro tls-connections? uint32
| +--ro base-netconf-port? uint32
| +--ro cpu-usage? percent
| +--ro mem-usage? uint32
+--ro notification-count
| +--ro total-ves-notifications
| | +--ro normal? uint32
| | +--ro warning? uint32
| | +--ro minor? uint32
| | +--ro major? uint32
| | +--ro critical? uint32
| +--ro total-netconf-notifications
| +--ro normal? uint32
| +--ro warning? uint32
| +--ro minor? uint32
| +--ro major? uint32
| +--ro critical? uint32
+--ro simulated-devices-list* [uuid]
+--ro uuid string
+--ro device-ip? string
+--ro device-port* uint32
+--ro is-mounted? boolean
+--ro operational-state? operational-state-type
+--ro notification-count
+--ro ves-notifications
| +--ro normal? uint32
| +--ro warning? uint32
| +--ro minor? uint32
| +--ro major? uint32
| +--ro critical? uint32
+--ro netconf-notifications
+--ro normal? uint32
+--ro warning? uint32
+--ro minor? uint32
+--ro major? uint32
+--ro critical? uint32

rpcs:
+---x restart-simulation
+---x add-key-pair-to-odl
+---x invoke-notification
+---w input
| +---w device-id string
| +---w yang-module-name string
| +---w notification-object string
+--ro output
+--ro status enumeration

Detailed information about the YANG attributes

Configuration

simulated-devices - represents the number of simulated devices. The default value is 0,
meaning that when the NTS is started, there are no simulated devices. When this value is
increased to , the NTS Manager starts docker containers in order to reach simulated n n
devices. If the value is decreased to , the NTS Manager will remove docker containers, until k
the number of simulated devices reaches ; k
mounted-devices - represents the number of devices to be mounted to an ODL based SDN
Controller. The same phylosophy as in the case of the previous leaf applies. If this number is
increased, the number of ODL mountpoints increases. Else, the simulated devices are being
unmounted from ODL. The number of mounted devices cannot exceed the number of simulated
devices. The details about the ODL controller where to mount/unmount are given by the controll

container;er-details Please note that this cannot be set to a value > 0 if the ves-
; For each simulated device, a number of NETCONF endpoints leaf is set to 'True'registration

will be mounted, according to the and leafs. See ssh-connections tls-connections NETCONF
section for more details;Endpoints

netconf-call-home - if set to , each simulated device will try to use NETCONF Call Home true
feature and try to reach the ODL Controller. The default value is . false
notification-config - this container groups the configuration about fault notification generation
of each simulated device;
fault-notification-delay-period - the amount of seconds between two generated fault
notifications. For example, if this has a value of , each simulated device will generate a 10 random
fault notification every seconds; 10 when this is set to 0, it will reset the notification

counters for the VES and NETCONF notifications, which are exposed in the simulator-
; The type is a leaf-list, such that the user could define a pattern for sending the status

notifications. E.g.: [10, 3, 5] means that a notification will be sent after 10 seconds, then after
another 3 seconds, then after 5 seconds, and then again after 10, 3, 5 etc.
ves-heartbeat-period - the amount of seconds between VES heartbeat messages that can be
generated by each simulated device. The details about the VES connection endpoint are given
in the container; ves-endpoint-details
is-netconf-available - if set to 'True', NETCONF notifications will be sent when a random fault
notification is generated, The NETCONF notification that is being sent is currently o-ran-fm:

; if set to 'False', NETCONF notifications are not being sent out;alarm-notif
is-ves-available - if set to 'True', VES messages will be sent when a random faultNotification
fault notification is generated; if set to 'False', VES messages are not generated; faultNotification
controller-details - this container groups the configuration related to the ODL based SDN
controller that the simulated devices can connect to;
controller-ip - the IP address of the ODL based SDN controller where the simulated devices
can be mounted. Both IPv4 and IPv6 are supported;
controller-port - the port of the ODL based SDN controller;
netconf-call-home-port - the NETCONF Call Home port of the ODL based SDN controller;
controller-username - the username to be used when connecting to the ODL based SDN
controller;
controller-password - the password to be used when connecting to the ODL based SDN
controller;
ves-endpoint-details - this container groups the configuration related to the VES endpoint
where the VES messages are targeted;
ves-endpoint-ip - the IP address of the VES endpoint where VES messages are targeted;
ves-endpoint-port - the port address of the VES endpoint where VES messages are targeted;
ves-endpoint-auth-method - the authentication method to be used when sending the VES
message to the VES endpoint. Possible values are:

no-auth - no authentication;
cert-only - certificate only authentication; in this case the certificate to be used for the
communication must be configured;
basic-auth - classic username/password authentication; in this case both the username
and password need to be configured;
cert-basic-auth - authentication that uses both username/password and a certificate; all
three values need to be configured in this case;

ves-endpoint-username - the username to be used when authenticating to the VES endpoint;
ves-endpoint-password - the password to be used when authenticating to the VES endpoint;
ves-endpoint-certificate - the certificate to be used when authenticating to the VES endpoint;
ves-registration - if this is set to 'True' , each simulated when simulated devices are starting
device will send out VES messages to the configured VES endpoint; if this is set pnfRegistration
to 'False', VES messages will not be sent out. pnfRegistration Please note that this cannot be
set to 'True' is simulated devices are already mounted to ODL based SDN controller

; For each simulated device, p(mounted-devices leaf > 0) ssh-connections + tls-connections
nfRegistration VES messages will be sent out. See section for more NETCONF Endpoints
details.

Status

simulation-usage-details - this container groups the information about the current simulator
status;
running-simulated-devices - the current number of running simulated devices;
running-mounted-devices - the current number of running simulated devices that have been
mounted to the ODL based SDN controller; For each simulated device, 10 NETCONF endpoints
will be mounted (7 SSH + 3 TLS). See section for more details. NETCONF Endpoints
ssh-connections - represents the number of SSH endpoints that are exposed by each of the
simulated devices. Please note that the total number of SSH and TLS connections cannot

The default value is 1.exceed 100. The value can only be changed when the NTS Manager
.is started, through the SshConnections environment variable

tls-connections - represents the number of TLS endpoints that are exposed by each of the
simulated devices. Please note that the total number of SSH and TLS connections cannot

The default value is 0.exceed 100. The value can only be changed when the NTS Manager
.is started, through the SshConnections environment variable

base-netconf-port - the port that was used as a base when craeting simulated devices;
cpu-usage - the percentage of the CPU used currently by the simulation framework;
mem-usage - the amount of RAM used (in MB) currently by the simulation framework;
notification-count - this container groups the details about the total number of notifications that
were generated by the simulated devices;
total-ves-notifications - this container groups the details about the total number of VES
notifications that were generated by the simulated devices, grouped by severity;
total-netcnof-notifications - this container groups the details about the total number of
NETCONF notifications that were generated by the simulated devices - grouped by severity;

simulated-devices-list - this list contains the details about each simulated devices that is
currently running;
uuid - the Universally Unique ID of the simulated device;
device-ip - the IP address of the simulated device;
device-port - the port of the simulated device, where the NETCONF connection is exposed;
is-mounted - boolean to show whether the device is currently mounted to an ODL based SDN
controller;
operational-state - the operational state of the current simulated device; it can be either not-

, , or ;specified created running exited
notification-count - this container groups the details about the number of notifications that
were generated by this particular simulated device;
ves-notifications - this container groups the details about the number of VES notifications that
were generated by this simulated device, grouped by severity;
netconf-notifications - this container groups the details about the number of NETCONF
notifications that were generated by this simulated device - grouped by severity.

RPCs

add-key-pair-to-odl - this RPC can be used to trigger the loading of a entry in an ODL keystore
based SDN controller such that the controller can connect to the simulated devices via . A TLS
private key, an associated certificate and a trusted certificate are loaded in the entry in keystore
ODL. The certificate associated with the private key to be used by ODL in the TLS
communication is signed by the same CA as the certificates used by the simulated devices,
easing the TLS configuration in both the NETCONF Server and the ODL.
restart-simulation - this RPC is not yet implemented.
invoke-notification - this RPC is used for forcing a simulated device to send a NETCONF
notification, as defined by the user.

The needed by the RPC: input
device-id - this is a string containing the name of the simulated device that
we want to send the notification. The user is responsible to give a correct
name which really exists, otherwise the RPC will fail.
yang-module-name - this is a string containing the name of the YANG
module which implements the notification that we want to send. E.g.: org-

module defines several notifications.openroadm-device
notification-object - this is a string containing the notification object that we
are trying to send from the simulated device, in JSON format. Please note
that the user has the responsibility to ensure that the JSON object is
valid, according to the definition of the notification in the YANG module.
There is no possibility to see what was wrong when trying to send an incorrect
notification. The RPC will only respond with an "ERROR" status in that case,
without further information. E.g. of a JSON containing a notification object of
type defined in the YANG module: otdr-scan-result org-openroadm-device {
"org-openroadm-device:otdr-scan-result":{"status":"Successful","
status-message":"Scan result was successful","result-file":"/home

./result-file.txt"}} Please note that the notification object contains also
the name of the YANG model defning it, as a namespace, as seen in the
example.

The returned by the RPC: output
status - if the notification was send successfully by the simulated device, the
RPC will return a value. Else, the RPC will return a value. SUCCESS ERROR

Simulated Device

Each simulated device is represented as a docker container, inside which the NETCONF Server runs.
The simulated device exposes the YANG models which are found inside the folder. A custom yang
version of the utility is used to generate random data for each of the YANG modules found inside pyang
the folder. yang

NETCONF Endpoints

Each simulated device exposes a number of NETCONF endpoints which represented by the sum of the S
and environment variables, on consecutive ports. The first simulated shConnections TlsConnections

device uses the ports starting from the environment variable used when starting the NETCONF_BASE
NTS Manager, while the next one uses the next ports and so on and so forth. E.g. if the NETCONF_BAS

and and , the first simulated device will expose ports E=50000 SshConnections=5 TlsConnections=3
from to , the second simulated device will expose ports from to etc. 50000 50007 5008 50015

The first ports exposed by a simulated device are based. A NETCONF client can SshConnections SSH
connect to the exposed endpoint using one of the SSH ports (e.g. 50000 to 50007, considering the
previous example) and the : . username/password netconf/netconf

The last ports exposed by a simulated device are based. A NETCONF client can TlsConnections TLS
connect to the exposed endpoint using one of the TLS ports (e.g. 50006 to 50008, considering the
previous example), using a valid certificate and the : . username netconf

Usage

Building the images

The script can be used to built the docker image associated with docker-build-nts-manager.sh
the NTS Manager. This will create a docker image named , which will be used to ntsim_manager_light
start the simulation framework. Inside the docker image, port 830 will wait for connections for the
NETCONF/YANG management interface.

The script can be used to build the docker image docker-build-onf-core-model-1-2.sh
associated with a simulated device, exposing the ONF CoreModel version 1.2.

The script can be used to build the docker image docker-build-onf-core-model-1-4.sh
associated with a simulated device, exposing the ONF CoreModel version 1.4.

The script can be used to build the docker image associated with a docker-build-openroadm.sh
simulated device, exposing the OpenROADM models.

The script can be used to build the docker image associated with docker-build-o-ran-device.sh
a simulated device, exposing the O-RAN models.

The script can be used to build the docker image docker-build-o-ran-sc-o-ran-ru.sh
associated with a simulated device, exposing the O-RAN-SC models.

The script can be used to build the docker image associated with docker-build-x-ran-device.sh*
a simulated device, exposing the X-RAN models.

Starting the NTS Manager

The NTS Manager can be started using the file that is provided inside tthe docker-compose.yml scripts
folder. Further, the parameters present in this file are explained.

version: 3' '
:services

 :ntsimulator
 : image ntsim_manager:latest" "
 : container_name NTS_Manager
 :ports
 - 8300:830" "
 :volumes
 - /var/run/docker.sock:/var/run/docker.sock" "
 - /var/tmp/NTS_Manager:/opt/dev/scripts" "
 - /usr/bin/docker:/usr/bin/docker" "
 :labels
 : "NTS-manager" ""
 :environment
 : NTS_IP 172.17.0.1" "
 : NETCONF_BASE 50000
 : DOCKER_ENGINE_VERSION 1.40" "
 : MODELS_IMAGE ntsim_oran" "
 : VesHeartbeatPeriod 0
 : IsVesAvailable true" "
 : IsNetconfAvailable true" "
 : VesRegistration false" "
 : VesEndpointPort 8080
 : VesEndpointIp 172.17.0.1" "
 : SshConnections 1
 : TlsConnections 0
 : K8S_DEPLOYMENT false" "
 : CONTAINER_NAME ntsimulator" "
 : NetconfCallHome true" "
 : NetconfCallHomePort 6666
 : ControllerIp 10.20.11.121" "
 : ControllerPort 8181
 : ControllerUsername admin" "
 : ControllerPassword admin" "
 : IPv6Enabled true" "

Port mapping:

"8300:830" - this maps the port from inside the docker container of the NTS 830
Manager to the port from the host, and binds it to any IP address on the host: 8300

Volumes - these map 3 important things:

the docker socket from the host is mapped inside the docker container: /var/run
-/docker.sock:/var/run/docker.sock please do not modify the path inside

;the container!
any folder from the host can be mapped to inside the docker container into othe /opt

folder: -/dev/scripts /var/tmp/NTS_Manager:/opt/dev/scripts please do not
;modify the path inside the container!

http://sock/var/run/docker.sock
http://NTS_Manager/opt/dev/scripts

the path to the docker executable needs to be mapped inside the container: /usr
-/bin/docker:/usr/bin/docker please do not modify the path inside the

;container!
Labels - this associates the label to the docker container where the NTS runs; NTS-manager
Environment variables:

NTS_IP - this should point to an IP address , through which the from the host
simulated devices will be accessed;
NETCONF_BASE - this is the starting port used to expose NETCONF endpoints.
Starting from this, each device will use 10 consecutive ports for its endpoints; Please
note that if multiple managers are deployed on the same machine, this
environment variable needs to be different for each of the managers!
DOCKER_ENGINE_VERSION - this is the version of the installed docker engine
currently on the host. This can be verified using command in the docker version
host, and looking to the variable from the Server details. API version: #.##
MODELS_IMAGE - this represents the name of the docker image that represents the
simulated device. The NTS Manager will start containers using this image, when
starting simulated devices.
VesHeartbeatPeriod - this can change the default value of the l ves-heartbeat-period
eaf used by the NTS Manager.
IsVesAvailable - this can change the default value of the leaf used is-ves-available
by the NTS Manager.
IsNetconfAvailable - this can change the default value of the leaf is-netconf-available
used by the NTS Manager.
VesRegistration - this can change the default value of the leaf used ves-registration
by the NTS Manager.
VesEndpointPort - this can change the default value of the leaf ves-endpoint-port
used by the NTS Manager.
VesEndpointIp - this can change the default value of the leaf used ves-endpoint-ip
by the NTS Manager.
SshConnections - this can change the number of SSH connection endpoints
which are exposed by each simulated device.
TlsConnections - this can change the number of TLS connection endpoints
which are exposed by each simulated device.
K8S_DEPLOYMENT - this value can be set to when the user wants to the NTS true
Framework in a Kubernetes deployment. The default is . false
CONTAINER_NAME - this represents the name to be used by the NTS Manager for
asigning to each simulated device, suffixed by a number. The default is . E.g.: ntsim
the first simulated device will be , the second onoe and so on. ntsim-0 ntsim-1 Please
note that if multiple managers are deployed on the same machine, this
environment variable needs to be different for each of the managers!
ControllerIp - this can change the default value of the leaf used by the controller-ip
NTS Manager. The default is . 172.17.0.1
ControllerPort - this can change the default value of the leaf used by controller-port
the NTS Manager. The default is . 8181
NetconfCallHomePort - this can change the default value of the netconf-call-home-

leaf used by the NTS Manager. The default is .port 6666
ControllerUsername - this can change the default value of the l controller-username
eaf used by the NTS Manager. The default is . admin
ControllerPassword - this can change the default value of the le controller-password
af used by the NTS Manager. The default is . admin
NetconfCallHome - this can change the default value of the leaf netconf-call-home
used by the NTS Manager. The default is . false
IPv6Enabled: if this is set to , IPv6 is enabled. true Please note that for a working
configuration, it is the user responsibility to correctly configure the Docker
daemon to work with IPv6, prior to starting the NTS Manager!

After modifying the file with values specific to your host, the NTS Manager can docker-compose.yml
be started by running the command from the folder. docker-compose up scripts

After the NTS Manager is started, it will wait for connections on its NETCONF/YANG management
interface. One can connect to this using a NETCONF Client. The for connecting username/password
are: . netconf/netconf

Example of command result, after the NTS Manager was started: docker ps

7ff723b7f794 ntsim_manager:latest "sh -c '/usr/bin/sup…" 5 days
ago Up 5 days

Using the NTS Manager

When the NTS Manager is started, its default configuration looks like this:

< =simulator-config xmlns urn:onf:params:xml:ns:yang:network-topology-simulator" "
>
 < >0</ >simulated-devices simulated-devices
 < >0</ >mounted-devices mounted-devices

http://docker/usr/bin/docker

 < >false</ >netconf-call-home netconf-call-home
 < >notification-config
 < >0</ >fault-notification-delay-period fault-notification-delay-period
 < >0</ >ves-heartbeat-period ves-heartbeat-period
 < >true</ >is-netconf-available is-netconf-available
 < >true</ >is-ves-available is-ves-available
 </ >notification-config
 < >controller-details
 < >172.17.0.1</ >controller-ip controller-ip
 < >8181</ >controller-port controller-port
 < >6666</ >netconf-call-home-port netconf-call-home-port
 < >admin</ >controller-username controller-username
 < >admin</ >controller-password controller-password
 </ >controller-details
 < >ves-endpoint-details
 < >172.17.0.1</ >ves-endpoint-ip ves-endpoint-ip
 < >30007</ >ves-endpoint-port ves-endpoint-port
 < >no-auth</ >ves-endpoint-auth-method ves-endpoint-auth-method
 < >false</ >ves-registration ves-registration
 </ >ves-endpoint-details
</ >simulator-config

This configuration can be altered by connecting to the NTS Manager with a NETCONF Client.

Starting a simulated device

Example RPC for starting simulated device: one

<? = = ?>xml version 1.0" " encoding utf-8" "
< = = >rpc xmlns urn:ietf:params:xml:ns:netconf:base:1.0" " message-id ""
 < >edit-config
 < >target
 < />running
 </ >target
 < >config
 < =simulator-config xmlns urn:onf:params:xml:ns:yang:network-topology-"

>simulator"
 < >1</ >simulated-devices simulated-devices
 </ >simulator-config
 </ >config
 </ >edit-config
</ >rpc

If the leaf will be set to a value of , the NTS <simulated-devices>1</simulated-devices> 1
Manager will start a new docker container. We can verify that this was successfull by running the docker

command. The results will look like this:ps

c18eb7a362f5 ntsim_oran "sh -c '/usr/bin/sup…" 4 days
ago Up 4 days 172.17.0.1:50000->830/tcp, 172.17.0.1:50001-
>831/tcp, 172.17.0.1:50002->832/tcp, 172.17.0.1:50003->833/tcp, 172.17.0.1:
50004->834/tcp, 172.17.0.1:50005->835/tcp, 172.17.0.1:50006->836/tcp,
172.17.0.1:50007->837/tcp, 172.17.0.1:50008->838/tcp, 172.17.0.1:50009->839
/tcp reverent_bhabha

Troubleshooting

No simulated devices are starting

If, after setting the leaf to a value greater that 0, <simulated-devices>1</simulated-devices>
no new containers are created, please make sure that the image name specified in the MODELS_IMAGE
environment variable when starting the NTS Manager is present in the host. You can verify that using the

command.docker images

Example of a result of such a command:

ntsim_oran_light latest 57b065de4458 4 days ago 186MB

This means that can be used as an environment MODELS_IMAGE: "ntsim_oran_light:latest"
variable when starting the NTS Manager.

Release notes

version 0.6.5

Added features:

basic-auth is now available for pnfRegistration messages - if the VES Endpoint supports basic-
auth (with username and password), the user can configure these endpoint details and the
pnfRegistration message will use them.

version 0.6.4

Bug fixes and improvements:

Fixed bug where pnfRegistration messages for TLS connections were not sent.
Fixed bug for manual notification generation failed when notification object was too long.

version 0.6.1

Added features:

Manual notification generation - this enables the user to send a NETCONF notification from a
simulated device, using the RPC defined in the NTS Manager. invoke-notification
automatic pulling of the simulated device image - the NTS Manager will automatically try to
pull the image of the simulated device (as defined in the environment MODELS_IMAGE
variable) before starting a simulated device.
custom naming of simulated devices - the user can now define its own name prefix for
simulated devices, through the environment variable defined in the docker- CONTAINER_NAME
compose.yml. E.g.: if CONTAINER_NAME: "ntsim", the simulated devices will be: , ntsim-0 ntsim

etc.-1

Bug fixes and improvements:

ssh-connections and are now removed from the simulator-config, and can be tls-connections
set only when the NTS Manager is started, through the and SshConnections TlsConnections
environment variables defined in the docker-compose.yml. The leafs are not moved in the
simulator-status, such that the user can check at runting what are the values defined.
fault-notification-delay-period has now the attribute , meaning that the order ordered-by user
defined by the user when adding multiple values to the leaf-list is preserved.

version 0.5.1

Added features:

NETCONF Call Home - this enables each simulated device to use the Call Home feature to
connect to the ODL instance, once it boots up. **Please note that when a device is using Call
Home, it will no longed expose all the number of and , but a ssh-connections tls-connections
single Call Home endpoint. **
controller-details configuration leafs are now exposed can now be set at startup time in the
docker-compose YAML file, as environment variables.

	O-RAN OAM simulation

