
CII status: Simulation

Basics (12 Points)
Change Control (9 Points)
Reporting (8 Points)
Quality (13 Points)
Security (16 Points)
Analysis (8 Points)

 Basics (12 Points)
(Result/Proof point (column A: enter Met/Unmet; Column B: enter relevant URLs/comments)

Simulation (end of Cherry)

Criteria Result / Proof point 

Identification

What is the human-readable name of the project? M
et

O-RAN SC's SIM

SIM = Simulation

RAN = Radio Access Network

O-RAN = Open RAN

SC = software community

What is a brief description of the project? M
et

The SIM project aims to provide simulators for any 
kind of interface needed in the O-RAN SC: A1, E1, 
E2, F1, FH, O1, to be used by other projects for 
development and/or prototyping.

What is the URL for the project (as a whole)? M
et

Simulation (SIM)

What is the URL for the version control repository (it may be the same as the project URL)? M
et

Multiple repositories in Linux Foundation Gerrit: SIM 
 repos: (sim/*-interface)

List of repos: Scope of the near-RT RIC platform 
and its components (summary)

What programming language(s) are used to implement the project? M
et

C, Python

What is the   name for the project (if it has one)?Common Platform Enumeration (CPE) U
n
m
et

N/A

Basic project website content 

The project website MUST succinctly describe what the software does (what problem does 
it solve?

M
et

Scope of the SIM project.

The project website MUST provide information on how to: obtain, provide feedback (as bug 
reports or enhancements), and contribute to the software.

M
et

More information on the SIM page:

meetings
development

The information on how to contribute MUST explain the contribution process (e.g., are pull 
requests used?) (URL required)

M
et

Guide to contributing .here

The information on how to contribute SHOULD include the requirements for acceptable 
contributions (e.g., a reference to any required coding standard). (URL required) 

U
n
m
et

N/A

FLOSS license

What license(s) is the project released under? M
et

Apache 2.0

https://wiki.o-ran-sc.org/display/SIM/SIM
https://gerrit.o-ran-sc.org/r/admin/repos/q/filter:sim
https://gerrit.o-ran-sc.org/r/admin/repos/q/filter:sim
https://wiki.o-ran-sc.org/pages/viewpage.action?pageId=10715416
https://wiki.o-ran-sc.org/pages/viewpage.action?pageId=10715416
https://nvd.nist.gov/cpe.cfm
https://wiki.o-ran-sc.org/display/SIM/SIM#SIM-Scope
https://wiki.o-ran-sc.org/display/SIM/SIM#SIM-Projectmeetings
https://wiki.o-ran-sc.org/display/SIM/SIM#SIM-Development
https://wiki.o-ran-sc.org/display/ORAN/ORAN+Developer%27s+Guide+to+CI+Resources+and+Processes+at+the+LF


The software produced by the project MUST be released as FLOSS.  M
et

Apache 2.0

It is SUGGESTED that any required license(s) for the software produced by the project be a
pproved by the Open Source Initiative (OSI).

M
et

Apache 2.0

The project MUST post the license(s) of its results in a standard location in their source 
repository. 

M
et

Available in the root of each repo.

Documentation

The project MUST provide basic documentation for the software produced by the project.  M
et

https://docs.o-ran-sc.org/en/latest/projects.
html#simulations-sim

The project MUST provide reference documentation that describes the external interface 
(both input and output) of the software produced by the project.

M
et

For the sim/o1-interface project: https://docs.o-ran-
sc.org/projects/o-ran-sc-sim-o1-interface/en/latest
/overview.html#network-topology-simulator-nts-next-
generation

Other

The project sites (website, repository, and download URLs) MUST support HTTPS using 
TLS.

M
et

The project MUST have one or more mechanisms for discussion (including proposed 
changes and issues) that are searchable, allow messages and topics to be addressed by 
URL, enable new people to participate in some of the discussions, and do not require client-
side installation of proprietary software.

M
et

Discussions possible via Confluence, meetings, 
mailing list.

The project SHOULD provide documentation in English and be able to accept bug reports 
and comments about code in English.

M
et

All documentation in English, JIRA available in 
English.

 Change Control (9 Points)
(Result/Proof point (column A: enter Met/Unmet; Column B: enter relevant URLs/comments)

Simulation

Criteria Result / Proof point 

Public version-controlled source repository

The project MUST have a version-controlled source repository that is publicly readable and has a URL. M
et

Projects Gerrit:

O1 Simulator
E2 Simulator

The project's source repository MUST track what changes were made, who made the changes, and when the changes were 
made.

M
et

Projects Gerrit:

O1 Simulator
E2 Simulator

Project .JIRA

To enable collaborative review, the project's source repository MUST include interim versions for review between releases; it 
MUST NOT include only final releases.

Projects Gerrit:

O1 Simulator
E2 Simulator

Releases:

Available in 
OSC 
repositories htt
ps://nexus3.o-

  for ran-sc.org/
Docker 
images.

It is SUGGESTED that common distributed version control software be used (e.g., git) for the project's source repository. M
et

Projects Gerrit:

O1 Simulator
E2 Simulator

https://opensource.org/licenses
https://opensource.org/licenses
https://docs.o-ran-sc.org/en/latest/projects.html#simulations-sim
https://docs.o-ran-sc.org/en/latest/projects.html#simulations-sim
https://docs.o-ran-sc.org/projects/o-ran-sc-sim-o1-interface/en/latest/overview.html#network-topology-simulator-nts-next-generation
https://docs.o-ran-sc.org/projects/o-ran-sc-sim-o1-interface/en/latest/overview.html#network-topology-simulator-nts-next-generation
https://docs.o-ran-sc.org/projects/o-ran-sc-sim-o1-interface/en/latest/overview.html#network-topology-simulator-nts-next-generation
https://docs.o-ran-sc.org/projects/o-ran-sc-sim-o1-interface/en/latest/overview.html#network-topology-simulator-nts-next-generation
https://gerrit.o-ran-sc.org/r/gitweb?p=sim%2Fo1-interface.git;a=summary
https://gerrit.o-ran-sc.org/r/gitweb?p=sim%2Fe2-interface.git;a=summary
https://gerrit.o-ran-sc.org/r/gitweb?p=sim%2Fo1-interface.git;a=summary
https://gerrit.o-ran-sc.org/r/gitweb?p=sim%2Fe2-interface.git;a=summary
https://jira.o-ran-sc.org/projects/SIM/issues/
https://gerrit.o-ran-sc.org/r/gitweb?p=sim%2Fo1-interface.git;a=summary
https://gerrit.o-ran-sc.org/r/gitweb?p=sim%2Fe2-interface.git;a=summary
https://nexus3.o-ran-sc.org/
https://nexus3.o-ran-sc.org/
https://nexus3.o-ran-sc.org/
https://gerrit.o-ran-sc.org/r/gitweb?p=sim%2Fo1-interface.git;a=summary
https://gerrit.o-ran-sc.org/r/gitweb?p=sim%2Fe2-interface.git;a=summary


Unique version numbering

The project results MUST have a unique version identifier for each release intended to be used by users M
et

https://docs.o-ran-
sc.org/projects/o-
ran-sc-sim-o1-
interface/en/latest
/release-notes.
html#version-history

It is SUGGESTED that the Semantic Versioning (SemVer) format be used for releases.  M
et

https://docs.o-ran-
sc.org/projects/o-
ran-sc-sim-o1-
interface/en/latest
/release-notes.
html#version-history

It is SUGGESTED that projects identify each release within their version control system. For example, it is SUGGESTED that 
those using git identify each release using git tags. 

M
et

Each release has 
its own branch.

Release notes

The project MUST provide, in each release, release notes that are a human-readable summary of major changes in that 
release to help users determine if they should upgrade and what the upgrade impact will be. The release notes MUST NOT 
be the raw output of a version control log (e.g., the "git log" command results are not release notes). Projects whose results 
are not intended for reuse in multiple locations (such as the software for a single website or service) AND employ continuous 
delivery MAY select "N/A". (URL required) 

M
et

https://docs.o-ran-
sc.org/projects/o-
ran-sc-sim-o1-
interface/en/latest
/release-notes.
html#version-history

The release notes MUST identify every publicly known vulnerability with a CVE assignment or similar that is fixed in each 
new release, unless users typically cannot practically update the software themselves. If there are no release notes or there 
have been no publicly known vulnerabilities, choose "not applicable" (N/A).

U
n
m
et

N/A

 Reporting (8 Points)
(Result/Proof point (column A: enter Met/Unmet; Column B: enter relevant URLs/comments)

Simulation (end of Cherry)

Criteria Result / Proof point 

Bug-reporting process

The project MUST provide a process for users to submit bug reports (e.g., using an issue tracker or a mailing 
list). (URL required) 

M
et

No specific requirements.

OSC Guidelines: https://wiki.
o-ran-sc.org/display/ORAN
/Reporting+Bugs

The project SHOULD use an issue tracker for tracking individual issues. M
et

JIRA: https://jira.o-ran-sc.org
/projects/SIM/issues/

The project MUST acknowledge a majority of bug reports submitted in the last 2-12 months (inclusive); the 
response need not include a fix.

M
et

JIRA: https://jira.o-ran-sc.org
/projects/SIM/issues/

The project SHOULD respond to a majority (>50%) of enhancement requests in the last 2-12 months 
(inclusive).

M
et

JIRA: https://jira.o-ran-sc.org
/projects/SIM/issues/

The project MUST have a publicly available archive for reports and responses for later searching. (URL 
required)

M
et

JIRA: https://jira.o-ran-sc.org
/projects/SIM/issues/

Vulnerability report process

The project MUST publish the process for reporting vulnerabilities on the project site. (URL required) U
n
m
et

If private vulnerability reports are supported, the project MUST include how to send the information in a way 
that is kept private. (URL required) 

Examples include a private defect report submitted on the web using HTTPS (TLS) or an email encrypted 
using OpenPGP. If vulnerability reports are always public (so there are never private vulnerability reports), 
choose "not applicable" (N/A).

U
n
m
et

https://docs.o-ran-sc.org/projects/o-ran-sc-sim-o1-interface/en/latest/release-notes.html#version-history
https://docs.o-ran-sc.org/projects/o-ran-sc-sim-o1-interface/en/latest/release-notes.html#version-history
https://docs.o-ran-sc.org/projects/o-ran-sc-sim-o1-interface/en/latest/release-notes.html#version-history
https://docs.o-ran-sc.org/projects/o-ran-sc-sim-o1-interface/en/latest/release-notes.html#version-history
https://docs.o-ran-sc.org/projects/o-ran-sc-sim-o1-interface/en/latest/release-notes.html#version-history
https://docs.o-ran-sc.org/projects/o-ran-sc-sim-o1-interface/en/latest/release-notes.html#version-history
https://semver.org/
https://docs.o-ran-sc.org/projects/o-ran-sc-sim-o1-interface/en/latest/release-notes.html#version-history
https://docs.o-ran-sc.org/projects/o-ran-sc-sim-o1-interface/en/latest/release-notes.html#version-history
https://docs.o-ran-sc.org/projects/o-ran-sc-sim-o1-interface/en/latest/release-notes.html#version-history
https://docs.o-ran-sc.org/projects/o-ran-sc-sim-o1-interface/en/latest/release-notes.html#version-history
https://docs.o-ran-sc.org/projects/o-ran-sc-sim-o1-interface/en/latest/release-notes.html#version-history
https://docs.o-ran-sc.org/projects/o-ran-sc-sim-o1-interface/en/latest/release-notes.html#version-history
https://docs.o-ran-sc.org/projects/o-ran-sc-sim-o1-interface/en/latest/release-notes.html#version-history
https://docs.o-ran-sc.org/projects/o-ran-sc-sim-o1-interface/en/latest/release-notes.html#version-history
https://docs.o-ran-sc.org/projects/o-ran-sc-sim-o1-interface/en/latest/release-notes.html#version-history
https://docs.o-ran-sc.org/projects/o-ran-sc-sim-o1-interface/en/latest/release-notes.html#version-history
https://docs.o-ran-sc.org/projects/o-ran-sc-sim-o1-interface/en/latest/release-notes.html#version-history
https://docs.o-ran-sc.org/projects/o-ran-sc-sim-o1-interface/en/latest/release-notes.html#version-history
https://wiki.o-ran-sc.org/display/ORAN/Reporting+Bugs
https://wiki.o-ran-sc.org/display/ORAN/Reporting+Bugs
https://wiki.o-ran-sc.org/display/ORAN/Reporting+Bugs
https://jira.o-ran-sc.org/projects/SIM/issues/
https://jira.o-ran-sc.org/projects/SIM/issues/
https://jira.o-ran-sc.org/projects/SIM/issues/
https://jira.o-ran-sc.org/projects/SIM/issues/
https://jira.o-ran-sc.org/projects/SIM/issues/
https://jira.o-ran-sc.org/projects/SIM/issues/
https://jira.o-ran-sc.org/projects/SIM/issues/
https://jira.o-ran-sc.org/projects/SIM/issues/


The project's initial response time for any vulnerability report received in the last 6 months MUST be less than 
or equal to 14 days. 

If there have been no vulnerabilities reported in the last 6 months, choose "not applicable" (N/A).

U
n
m
et

 Quality (13 Points)
(Result/Proof point (column A: enter Met/Unmet; Column B: enter relevant URLs/comments)

Simulation 
(end of 
Cherry)

Criteria Result / 
Proof 
point 

Working build system

If the software produced by the project requires building for use, the project MUST provide a working build system that can automatically 
rebuild the software from source code. 

Met Dock
er

It is SUGGESTED that common tools be used for building the software. Met Dock
er

The project SHOULD be buildable using only FLOSS tools. Met Dock
er

Automated test suite

The project MUST use at least one automated test suite that is publicly released as FLOSS (this test suite may be maintained as a 
separate FLOSS project).

Un
met

A test suite SHOULD be invocable in a standard way for that language.
For example, "make check", "mvn test", or "rake test" (Ruby).

Un
met

It is SUGGESTED that the test suite cover most (or ideally all) the code branches, input fields, and functionality. Un
met

It is SUGGESTED that the project implement continuous integration (where new or changed code is frequently integrated into a central 
code repository and automated tests are run on the result).

Un
met

New functionality testing

The project MUST have a general policy (formal or not) that as major new functionality is added to the software produced by the project, 
tests of that functionality should be added to an automated test suite. 
As long as a policy is in place, even by word of mouth, that says developers should add tests to the automated test suite for major new 
functionality, select "Met.

Un
met

The project MUST have evidence that the test_policy for adding tests has been adhered to in the most recent major changes to the  
software produced by the project.
Major functionality would typically be mentioned in the release notes. Perfection is not required, merely evidence that tests are typically 
being added in practice to the automated test suite when new major functionality is added to the software produced by the project.

Un
met

It is SUGGESTED that this policy on adding tests (see test_policy) be documented in the instructions for change proposals.   
However, even an informal rule is acceptable as long as the tests are being added in practice.

Un
met

Warning flags

The project MUST enable one or more compiler warning flags, a "safe" language mode, or use a separate "linter" tool to look for code 
quality errors or common simple mistakes, if there is at least one FLOSS tool that can implement this criterion in the selected language.

Un
met

The project MUST address warnings. Un
met

It is SUGGESTED that projects be maximally strict with warnings in the software produced by the project, where practical.

Some warnings cannot be effectively enabled on some projects. What is needed is evidence that the project is striving to enable warning 
flags where it can, so that errors are detected early.

Un
met

 Security (16 Points)

https://bestpractices.coreinfrastructure.org/en/projects/1#test_policy
https://bestpractices.coreinfrastructure.org/en/projects/1#test_policy


(Result/Proof point (column A: enter Met/Unmet; Column B: enter relevant URLs/comments)

Simulatio
n (end of 
Cherry)

Criteria Result 
/ 
Proof 
point 

Secure development knowledge

The project MUST have at least one primary developer who knows how to design secure software. (See ‘details’ for the exact requirements.)

At least one of the project's primary developers MUST know of common kinds of errors that lead to vulnerabilities in this kind of software, as 
well as at least one method to counter or mitigate each of them.

Use basic good cryptographic practices

The software produced by the project MUST use, by default, only cryptographic protocols and algorithms that are publicly published and 
reviewed by experts (if cryptographic protocols and algorithms are used).These cryptographic criteria do not always apply because some 
software has no need to directly use cryptographic capabilities.

M
et

If the software produced by the project is an application or library, and its primary purpose is not to implement cryptography, then it 
SHOULD only call on software specifically designed to implement cryptographic functions; it SHOULD NOT re-implement its own.

M
et

Existi
ng 
open
-
sour
ce 
crypt
ogra
phic 
librar
ies 
are 
used.

All functionality in the software produced by the project that depends on cryptography MUST be implementable using FLOSS. See the Open 
.Standards Requirement for Software by the Open Source Initiative

M
et

Existi
ng 
open
-
sour
ce 
crypt
ogra
phic 
librar
ies 
are 
used.

The security mechanisms within the software produced by the project MUST use default keylengths that at least meet the NIST minimum 
requirements through the year 2030 (as stated in 2012). It MUST be possible to configure the software so that smaller keylengths are 
completely disabled.These minimum bitlengths are: symmetric key 112, factoring modulus 2048, discrete logarithm key 224, discrete 
logarithmic group 2048, elliptic curve 224, and hash 224 (password hashing is not covered by this bitlength, more information on password 
hashing can be found in the criterion). See for a comparison of keylength  crypto_password_storage   https://www.keylength.com 
recommendations from various organizations. The software MAY allow smaller keylengths in some configurations (ideally it would not, since 
this allows downgrade attacks, but shorter keylengths are sometimes necessary for interoperability).

The default security mechanisms within the software produced by the project MUST NOT depend on broken cryptographic algorithms (e.g., 
MD4, MD5, single DES, RC4, Dual_EC_DRBG), or use cipher modes that are inappropriate to the context, unless they are necessary to 
implement an interoperable protocol (where the protocol implemented is the most recent version of that standard broadly supported by the 
network ecosystem, that ecosystem requires the use of such an algorithm or mode, and that ecosystem does not offer any more secure 
alternative). The documentation MUST describe any relevant security risks and any known mitigations if these broken algorithms or modes 
are necessary for an interoperable protocol.

The default security mechanisms within the software produced by the project SHOULD NOT depend on cryptographic algorithms or modes 
with known serious weaknesses (e.g., the SHA-1 cryptographic hash algorithm or the CBC mode in SSH).

The security mechanisms within the software produced by the project SHOULD implement perfect forward secrecy for key agreement 
protocols so a session key derived from a set of long-term keys cannot be compromised if one of the long-term keys is compromised in the 
future. 

If the software produced by the project causes the storing of passwords for authentication of external users, the passwords MUST be stored 
as iterated hashes with a per-user salt by using a key stretching (iterated) algorithm (e.g., Argon2id, Bcrypt, Scrypt, or PBKDF2). See also O
WASP Password Storage Cheat Sheet).

https://opensource.org/osr
https://opensource.org/osr
https://bestpractices.coreinfrastructure.org/en/projects/1#crypto_password_storage
https://www.keylength.com/
https://cheatsheetseries.owasp.org/cheatsheets/Password_Storage_Cheat_Sheet.html
https://cheatsheetseries.owasp.org/cheatsheets/Password_Storage_Cheat_Sheet.html


The security mechanisms within the software produced by the project MUST generate all cryptographic keys and nonces using a 
cryptographically secure random number generator, and MUST NOT do so using generators that are cryptographically insecure.

Secured delivery against man-in-the-middle (MITM) attacks

The project MUST use a delivery mechanism that counters MITM attacks. Using https or ssh+scp is acceptable. M
et

NET
CON
F 
over 
SSH
/TTL
S is 
used.

A cryptographic hash (e.g., a sha1sum) MUST NOT be retrieved over http and used without checking for a cryptographic signature.  U
n
m
et

N/A

Publicly known vulnerabilities fixed

There MUST be no unpatched vulnerabilities of medium or higher severity that have been publicly known for more than 60 days. 

Projects SHOULD fix all critical vulnerabilities rapidly after they are reported. 

Publicly known vulnerabilities fixed

is intended to limit public access. A project MAY leak "sample" credentials for testing and unimportant databases, as long as they are not 
intended to limit public access.

M
et

Cred
entia
ls 
are 
used
for 
proto
typin
g
/testi
ng.

 Analysis (8 Points)
(Result/Proof point (column A: enter Met/Unmet; Column B: enter relevant URLs/comments)

Simulatio
n (end of 
Cherry)

Criteria Result 
/ 
Proof 
point 

Static code analysis

At least one static code analysis tool (beyond compiler warnings and "safe" language modes) MUST be applied to any proposed major 
production release of the software before its release, if there is at least one FLOSS tool that implements this criterion in the selected 
language.

Unm
et

It is SUGGESTED that at least one of the static analysis tools used for the static_analysis criterion include rules or approaches to look for 
common vulnerabilities in the analyzed language or environment.

Unm
et

All medium and higher severity exploitable vulnerabilities discovered with static code analysis MUST be fixed in a timely way after they are 
confirmed. 

Unm
et

It is SUGGESTED that static source code analysis occur on every commit or at least daily. Unm
et

Dynamic code analysis

It is SUGGESTED that at least one dynamic analysis tool be applied to any proposed major production release of the software before its 
release.

Unm
et

It is SUGGESTED that if the software produced by the project includes software written using a memory-unsafe language (e.g., C or C++), 
then at least one dynamic tool (e.g., a fuzzer or web application scanner) be routinely used in combination with a mechanism to detect 
memory safety problems such as buffer overwrites. If the project does not produce software written in a memory-unsafe language, choose 
"not applicable" (N/A).

Unm
et



It is SUGGESTED that the software produced by the project include many run-time assertions that are checked during dynamic analysis. Unm
et

All medium and higher severity exploitable vulnerabilities discovered with dynamic code analysis MUST be fixed in a timely way after they 
are confirmed.

Unm
et


	CII status: Simulation

