
CII status: near-RT RIC

Official status:
How to read
Basics (12 Points)
Change Control (9 Points)
Reporting (8 Points)
Quality (13 Points)
Security (16 Points)
Analysis (8 Points)

Official status:
https://bestpractices.coreinfrastructure.org/en/projects/4605

How to read
All items marked in are optional items that we do not fully meet yellow

All items marked in are mandatory items that we fully meet, but where it is sensible to improveorange

All items that we do not meet have a statement on their priority: (fix-priority very-low|low|medium|high|very-high)

 Basics (12 Points)
(Result/Proof point (column A: enter Met/Unmet; Column B: enter relevant URLs/comments)

near-RT RIC (end of Cherry)

Criteria Result / Proof point / Notes

Identification

What is the human-readable name of the
project?

y
es

O-RAN SC's Near-RT RIC

RT = realtime

RIC = RAN intelligent controller

RAN = Radio Access Network

O-RAN = Open RAN

SC = software community

What is a brief description of the project? y
es

The is a software based nearrealtime microservicebased platform for near-RT RIC Platform
hosting micro-service-based applications - the xApps - that run on the near-RT RIC platform.
xApps are not part of the RIC platform and developed in projects that are separate from the near-
RT RIC platform project. The near-RT RIC platform is providing xApps the infrastructure for
controlling a distributed collection of RAN base stations (eNB, gNB, CU, DU) in a region via the
O-RAN alliance's E2 protocol ("southbound"). (quote from Scope of the near-RT RIC platform

)and its components (summary)

What is the URL for the project (as a whole)? y
es

Near Realtime RAN Intelligent Controller (RIC)

What is the URL for the version control
repository (it may be the same as the project
URL)?

y
es

Multiple repositories in Linux Foundation Gerrit: https://gerrit.o-ran-sc.org/r/admin/repos/

List of repos: Scope of the near-RT RIC platform and its components (summary)

What programming language(s) are used to
implement the project?

y
es

C++, Golang, Python

What is the Common Platform Enumeration
 name for the project (if it has one)?(CPE)

no ID

Basic project website content

The project website MUST succinctly describe
what the software does (what problem does it
solve?

y
es

Scope of the near-RT RIC platform and its components (summary))

https://bestpractices.coreinfrastructure.org/en/projects/4605
https://wiki.o-ran-sc.org/pages/viewpage.action?pageId=10715416
https://wiki.o-ran-sc.org/pages/viewpage.action?pageId=10715416
https://wiki.o-ran-sc.org/pages/viewpage.action?pageId=1179659
https://gerrit.o-ran-sc.org/r/admin/repos/
https://wiki.o-ran-sc.org/pages/viewpage.action?pageId=10715416
https://nvd.nist.gov/cpe.cfm
https://nvd.nist.gov/cpe.cfm
https://wiki.o-ran-sc.org/pages/viewpage.action?pageId=10715416

The project website MUST provide information
on how to: obtain, provide feedback (as bug
reports or enhancements), and contribute to the
software.

y
es

obtain: from gerrit repos or from the OSC releases: Releases

bugs: Tools (mailing list, JIRA, Gerrit)

enhancements: Same JIRAS tool as for feature planning.

contribute: See OSC guidelines: Project Developer Wiki

The information on how to contribute MUST
explain the contribution process (e.g., are pull
requests used?) (URL required)

y
es

contribute: See OSC guidelines: Project Developer Wiki

The information on how to contribute SHOULD
include the requirements for acceptable
contributions (e.g., a reference to any required
coding standard). (URL required)

n
o
(fi
x-
pr
io
rit
y
v
er
y-
lo
w)

not available. Governance

2021-02-19

Follow
standard
coding styles
for
components.

Its optional

FLOSS license

What license(s) is the project released under? y
es

Apache 2.0

The software produced by the project MUST be
released as FLOSS.

y
es

Apache 2.0

It is SUGGESTED that any required license(s)
for the software produced by the project be appro
ved by the Open Source Initiative (OSI).

y
es

The project MUST post the license(s) of its
results in a standard location in their source
repository.

y
es

root dir of all repos included in the project

Documentation

The project MUST provide basic documentation
for the software produced by the project.

y
es

https://docs.o-ran-sc.org/projects/o-ran-sc-ric-plt-ric-dep/en/latest/ and other documentation
under: https://docs.o-ran-sc.org/en/latest/projects.html

The project MUST provide reference
documentation that describes the external
interface (both input and output) of the software
produced by the project.

y
es

2021-05-25: See section "external interface" in Introduction and guides Governance

2021-02-17

A page is to
be created Int
roduction
and guides &
the page will
be regularly
updated for
below:

xapp
framew
ork
(platfor
m lib)
interfac
e (c
/python
/go
interfac
e)
o1,o2,
e2,a1
interfac
es ,
descripti
on of
implem
ented
/not-
implem
ented
work
How do
deploy
RIC
platform

https://wiki.o-ran-sc.org/display/REL/Releases
https://wiki.o-ran-sc.org/pages/viewpage.action?pageId=3605193
https://wiki.o-ran-sc.org/display/ORAN/Project+Developer+Wiki
https://wiki.o-ran-sc.org/display/ORAN/Project+Developer+Wiki
https://opensource.org/licenses
https://opensource.org/licenses
https://docs.o-ran-sc.org/projects/o-ran-sc-ric-plt-ric-dep/en/latest/
https://docs.o-ran-sc.org/en/latest/projects.html
https://wiki.o-ran-sc.org/display/RICP/Introduction+and+guides
https://wiki.o-ran-sc.org/display/RICP/Introduction+and+guides
https://wiki.o-ran-sc.org/display/RICP/Introduction+and+guides
https://wiki.o-ran-sc.org/display/RICP/Introduction+and+guides

Other

The project sites (website, repository, and
download URLs) MUST support HTTPS using
TLS.

y
es

The project MUST have one or more
mechanisms for discussion (including proposed
changes and issues) that are searchable, allow
messages and topics to be addressed by URL,
enable new people to participate in some of the
discussions, and do not require client-side
installation of proprietary software.

y
es

Tools (mailing list, JIRA, Gerrit)

The project SHOULD provide documentation in
English and be able to accept bug reports and
comments about code in English.

y
es

 Change Control (9 Points)
(Result/Proof point (column A: enter Met/Unmet; Column B: enter relevant URLs/comments)

Project A

Criteria Result / Proof point

Public version-controlled source repository

The project MUST have a version-controlled source repository that is publicly readable and has a URL. y
es

Scope of the near-RT
RIC platform and its
components (summary)

The project's source repository MUST track what changes were made, who made the changes, and when the
changes were made.

y
es

Scope of the near-RT
RIC platform and its
components (summary)

To enable collaborative review, the project's source repository MUST include interim versions for review
between releases; it MUST NOT include only final releases.

y
es

Scope of the near-RT
RIC platform and its
components (summary)

It is SUGGESTED that common distributed version control software be used (e.g., git) for the project's source
repository.

y
es

Scope of the near-RT
RIC platform and its
components (summary)

Unique version numbering

The project results MUST have a unique version identifier for each release intended to be used by users y
es

It is SUGGESTED that the Semantic Versioning (SemVer) format be used for releases. y
es

It is SUGGESTED that projects identify each release within their version control system. For example, it is
SUGGESTED that those using git identify each release using git tags.

y
es

named branches

Release notes

[] The project MUST provide, in each release, release notes that are a human-readable release_notes
summary of major changes in that release to help users determine if they should upgrade and what the
upgrade impact will be. The release notes MUST NOT be the raw output of a version control log (e.g., the "git
log" command results are not release notes). Projects whose results are not intended for reuse in multiple
locations (such as the software for a single website or service) AND employ continuous delivery MAY select
"N/A". (URL required)

y
es

We as per RC-1 in
release check list

by repo, but not all
repos have release
notes. Good example: ht
tps://docs.o-ran-sc.org
/projects/o-ran-sc-ric-plt-
lib-rmr/en/latest/rel-
notes.html

Governance

2021-02-19

Create a release
checklist comprising of
this & few other from this
page.

Did every component
update their rst release
notes & did PTL
summarized those on
one wiki page ?

RC-1 in Release criteria
checklist template

https://wiki.o-ran-sc.org/pages/viewpage.action?pageId=3605193
https://wiki.o-ran-sc.org/pages/viewpage.action?pageId=10715416
https://wiki.o-ran-sc.org/pages/viewpage.action?pageId=10715416
https://wiki.o-ran-sc.org/pages/viewpage.action?pageId=10715416
https://wiki.o-ran-sc.org/pages/viewpage.action?pageId=10715416
https://wiki.o-ran-sc.org/pages/viewpage.action?pageId=10715416
https://wiki.o-ran-sc.org/pages/viewpage.action?pageId=10715416
https://wiki.o-ran-sc.org/pages/viewpage.action?pageId=10715416
https://wiki.o-ran-sc.org/pages/viewpage.action?pageId=10715416
https://wiki.o-ran-sc.org/pages/viewpage.action?pageId=10715416
https://wiki.o-ran-sc.org/pages/viewpage.action?pageId=10715416
https://wiki.o-ran-sc.org/pages/viewpage.action?pageId=10715416
https://wiki.o-ran-sc.org/pages/viewpage.action?pageId=10715416
https://semver.org/
https://bestpractices.coreinfrastructure.org/en/criteria/0#0.release_notes
https://docs.o-ran-sc.org/projects/o-ran-sc-ric-plt-lib-rmr/en/latest/rel-notes.html
https://docs.o-ran-sc.org/projects/o-ran-sc-ric-plt-lib-rmr/en/latest/rel-notes.html
https://docs.o-ran-sc.org/projects/o-ran-sc-ric-plt-lib-rmr/en/latest/rel-notes.html
https://docs.o-ran-sc.org/projects/o-ran-sc-ric-plt-lib-rmr/en/latest/rel-notes.html
https://docs.o-ran-sc.org/projects/o-ran-sc-ric-plt-lib-rmr/en/latest/rel-notes.html
https://wiki.o-ran-sc.org/display/RICP/Release+criteria+checklist+template
https://wiki.o-ran-sc.org/display/RICP/Release+criteria+checklist+template

 The release notes MUST identify every publicly known vulnerability with a CVE []release_notes_vulns

assignment or similar that is fixed in each new release, unless users typically cannot practically update the
software themselves. If there are no release notes or there have been no publicly known vulnerabilities,
choose "not applicable" (N/A).

y
es

As per RC-2 in release
check list

Governance/Technical

2021-02-19

For own source-code
bugs this can be handled
manually as part of
release checklist (If JIRA
based security bug has
been created)

But for containers we
should find a technical
solution (automated)
involving some tool e.g.
docker image scanning
tool (LFN provided
preferred)

RC-2 in Release criteria
checklist template

 Reporting (8 Points)
(Result/Proof point (column A: enter Met/Unmet; Column B: enter relevant URLs/comments)

near-RT RIC (end of Cherry)

Criteria Result / Proof point

Bug-reporting process

The project MUST provide a process for users to submit bug reports (e.g., using an
issue tracker or a mailing list). (URL required)

yes Tools (mailing list, JIRA, Gerrit)

The project SHOULD use an issue tracker for tracking individual issues. yes Tools (mailing list, JIRA, Gerrit)

The project MUST acknowledge a majority of bug reports submitted in the last 2-12
months (inclusive); the response need not include a fix.

yes TODO

The project SHOULD respond to a majority (>50%) of enhancement requests in the last
2-12 months (inclusive).

yes TODO

 The project MUST have a publicly available archive for reports and []report_archive

responses for later searching. (URL required)
yes as per RC-3 Governance

2021-02-19

Depends on previous two criterion

As part of release checklist store the
snapshot copy of the reports of
previous two criterion into wiki page.

RC-3 in Release criteria checklist
template

Vulnerability report process

The project MUST publish the process for reporting vulnerabilities on the project site.
(URL required)

yes as per section "security bugs"
in Tools (mailing list, JIRA,
Gerrit)

Governance

2021-02-19

Tools (mailing list, JIRA, Gerrit)

Jira issues will need to be labelled
for security bugs.

If private vulnerability reports are supported, the project MUST include how to send the
information in a way that is kept private. (URL required)

Examples include a private defect report submitted on the web using HTTPS (TLS) or an
email encrypted using OpenPGP. If vulnerability reports are always public (so there are
never private vulnerability reports), choose "not applicable" (N/A).

NA Governance

2021-02-19

NA (We don't support private
vulnerability)

 The project's initial response time for any vulnerability report []vulnerability_report_response

received in the last 6 months MUST be less than or equal to 14 days.

If there have been no vulnerabilities reported in the last 6 months, choose "not
applicable" (N/A).

not
app
lica
ble

Note we have RC-3 to make
sure we have a report on it if
we have security vulnerabilities

Governance

2021-02-19

JIRA Report & Release checklist as
criteria

RC-3 in Release criteria checklist
template

https://bestpractices.coreinfrastructure.org/en/criteria/0#0.release_notes_vulns
https://wiki.o-ran-sc.org/display/RICP/Release+criteria+checklist+template
https://wiki.o-ran-sc.org/display/RICP/Release+criteria+checklist+template
https://wiki.o-ran-sc.org/pages/viewpage.action?pageId=3605193
https://wiki.o-ran-sc.org/pages/viewpage.action?pageId=3605193
https://bestpractices.coreinfrastructure.org/en/criteria/0#0.report_archive
https://wiki.o-ran-sc.org/display/RICP/Release+criteria+checklist+template
https://wiki.o-ran-sc.org/display/RICP/Release+criteria+checklist+template
https://wiki.o-ran-sc.org/pages/viewpage.action?pageId=3605193
https://wiki.o-ran-sc.org/pages/viewpage.action?pageId=3605193
https://wiki.o-ran-sc.org/pages/viewpage.action?pageId=3605193
https://bestpractices.coreinfrastructure.org/en/criteria/0#0.vulnerability_report_response
https://wiki.o-ran-sc.org/display/RICP/Release+criteria+checklist+template
https://wiki.o-ran-sc.org/display/RICP/Release+criteria+checklist+template

 Quality (13 Points)
(Result/Proof point (column A: enter Met/Unmet; Column B: enter relevant URLs/comments)

near-RT RIC (end of Cherry)

Criteria Result / Proof point / Notes

Working build system

If the software produced by the project requires building for use, the project MUST
provide a working build system that can automatically rebuild the software from
source code.

yes LF Jenkins

It is SUGGESTED that common tools be used for building the software. yes LF jenkins

The project SHOULD be buildable using only FLOSS tools. yes

Automated test suite

The project MUST use at least one automated test suite that is publicly released as
FLOSS (this test suite may be maintained as a separate FLOSS project).

yes robot test cases in https://gerrit.o-ran-
sc.org/r/gitweb?p=it/test.git;a=tree;
f=ric_robot_suite

A test suite SHOULD be invocable in a standard way for that language.
For example, "make check", "mvn test", or "rake test" (Ruby).

no (fix-
priority
low)

Governance

2021-02-17

It is SUGGESTED that the test suite cover most (or ideally all) the code branches,
input fields, and functionality.

partial
(fix-
priority
mediu
m)

improvements possible Governance

2021-02-17

Explore code coverage report if
it covers input field/functionality
aspects.

Cover all component &
reach a code coverage
level threshold as 50%
Confluence link to code
coverage report for all
component
Create development item
for below 50% coverage
Add a regular item in the
meeting (once per month)
to check code coverage

It is SUGGESTED that the project implement continuous integration (where new or
changed code is frequently integrated into a central code repository and automated
tests are run on the result).

yes

New functionality testing

The project MUST have a general policy (formal or not) that as major new
functionality is added to the software produced by the project, tests of that
functionality should be added to an automated test suite.
As long as a policy is in place, even by word of mouth, that says developers should
add tests to the automated test suite for major new functionality, select "Met.

yes See RC-4 for testing policy in new
commits

Governance

2021-02-17

To be brought up in
community call for wider
discussion.
Draft: Check that all large
or XL commits of the last
two weeks have also new
unit tests. This is our policy.

The project MUST have evidence that the for adding tests has been test_policy
adhered to in the most recent major changes to the software produced by the
project.
Major functionality would typically be mentioned in the release notes. Perfection is
not required, merely evidence that tests are typically being added in practice to the
automated test suite when new major functionality is added to the software
produced by the project.

yes See RC-4 Governance

2021-02-17
Check that all large or XL
commits of the last two weeks
have also new unit tests. This is
our policy.

https://gerrit.o-ran-sc.org/r/gitweb?p=it/test.git;a=tree;f=ric_robot_suite
https://gerrit.o-ran-sc.org/r/gitweb?p=it/test.git;a=tree;f=ric_robot_suite
https://gerrit.o-ran-sc.org/r/gitweb?p=it/test.git;a=tree;f=ric_robot_suite
https://bestpractices.coreinfrastructure.org/en/projects/1#test_policy

It is SUGGESTED that this policy on adding tests (see) be itest_policy documented
n the instructions for change proposals.
However, even an informal rule is acceptable as long as the tests are being added
in practice.

no (fix-
priority
mediu
m)

Governance

2021-02-17

Wiki on how to do testing in
RIC
Robot framework is the
primary test framework for
functional testing
Unit test recommendation
for component

Warning flags

The project MUST enable one or more compiler warning flags, a "safe" language
mode, or use a separate "linter" tool to look for code quality errors or common
simple mistakes, if there is at least one FLOSS tool that can implement this
criterion in the selected language.

Yes We use a separate "linter tool" :
Sonar. Report: https://sonarcloud.io
/organizations/o-ran-sc/projects?
search=ric&sort=coverage

Technical

2021-02-17

Every component should
be on Sonar
Have a list for all
component on a wiki
pointing to Sonar reports

The project MUST address warnings. Yes As per RC-5 Governance

2021-02-17

Every blocker (under sonar code
smell report) should be
addressed by committer of
component

It is SUGGESTED that projects be maximally strict with warnings in the software
produced by the project, where practical.

Some warnings cannot be effectively enabled on some projects. What is needed is
evidence that the project is striving to enable warning flags where it can, so that
errors are detected early.

partial
(fix-
priority
low)

Governance

2021-02-17

No to be picked as of now.

 Security (16 Points)
(Result/Proof point (column A: enter Met/Unmet; Column B: enter relevant URLs/comments)

near-RT RIC (end of Cherry)

Criteria Result / Proof point / Notes

Secure development knowledge

The project MUST have at least one primary developer who knows how to design secure software. (See ‘details’ for the exact
requirements.)

yes the PTL and
many members
are trained for
this

At least one of the project's primary developers MUST know of common kinds of errors that lead to vulnerabilities in this kind of
software, as well as at least one method to counter or mitigate each of them.

yes the PTL and
many members
are trained for
this

Use basic good cryptographic practices

The software produced by the project MUST use, by default, only cryptographic protocols and algorithms that are publicly
published and reviewed by experts (if cryptographic protocols and algorithms are used).These cryptographic criteria do not
always apply because some software has no need to directly use cryptographic capabilities.

yes no TLS yet, but
once it comes
in Dawn we
need to assure
this.

If the software produced by the project is an application or library, and its primary purpose is not to implement cryptography,
then it SHOULD only call on software specifically designed to implement cryptographic functions; it SHOULD NOT re-implement
its own.

yes

All functionality in the software produced by the project that depends on cryptography MUST be implementable using
FLOSS. See the . Open Standards Requirement for Software by the Open Source Initiative

yes

The security mechanisms within the software produced by the project MUST use default keylengths that at least meet the NIST
minimum requirements through the year 2030 (as stated in 2012). It MUST be possible to configure the software so that smaller
keylengths are completely disabled.These minimum bitlengths are: symmetric key 112, factoring modulus 2048, discrete
logarithm key 224, discrete logarithmic group 2048, elliptic curve 224, and hash 224 (password hashing is not covered by this
bitlength, more information on password hashing can be found in the criterion). See crypto_password_storage https://www.

for a comparison of keylength recommendations from various organizations. The software MAY allow smaller keylength.com
keylengths in some configurations (ideally it would not, since this allows downgrade attacks, but shorter keylengths are
sometimes necessary for interoperability).

yes no TLS yet, but
once it comes
in Dawn we
need to assure
this.

https://bestpractices.coreinfrastructure.org/en/projects/1#test_policy
https://sonarcloud.io/organizations/o-ran-sc/projects?search=ric&sort=coverage
https://sonarcloud.io/organizations/o-ran-sc/projects?search=ric&sort=coverage
https://sonarcloud.io/organizations/o-ran-sc/projects?search=ric&sort=coverage
https://opensource.org/osr
https://bestpractices.coreinfrastructure.org/en/projects/1#crypto_password_storage
https://www.keylength.com/
https://www.keylength.com/

The default security mechanisms within the software produced by the project MUST NOT depend on broken cryptographic
algorithms (e.g., MD4, MD5, single DES, RC4, Dual_EC_DRBG), or use cipher modes that are inappropriate to the context,
unless they are necessary to implement an interoperable protocol (where the protocol implemented is the most recent version
of that standard broadly supported by the network ecosystem, that ecosystem requires the use of such an algorithm or mode,
and that ecosystem does not offer any more secure alternative). The documentation MUST describe any relevant security risks
and any known mitigations if these broken algorithms or modes are necessary for an interoperable protocol.

yes no TLS yet, but
once it comes
in Dawn we
need to assure
this.

The default security mechanisms within the software produced by the project SHOULD NOT depend on cryptographic
algorithms or modes with known serious weaknesses (e.g., the SHA-1 cryptographic hash algorithm or the CBC mode in SSH).

yes no TLS yet, but
once it comes
in Dawn we
need to assure
this.

The security mechanisms within the software produced by the project SHOULD implement perfect forward secrecy for key
agreement protocols so a session key derived from a set of long-term keys cannot be compromised if one of the long-term keys
is compromised in the future.

yes no TLS yet, but
once it comes
in Dawn we
need to assure
this.

If the software produced by the project causes the storing of passwords for authentication of external users, the passwords
MUST be stored as iterated hashes with a per-user salt by using a key stretching (iterated) algorithm (e.g., Argon2id, Bcrypt,
Scrypt, or PBKDF2). See also).OWASP Password Storage Cheat Sheet

N/A right now we
consider this
interface as
non-
authenticated
(hardcoded
username
/password)

T
e
c
h
ni
c
al

2
0
2
1-
0
2-
17

https://cheatsheetseries.owasp.org/cheatsheets/Password_Storage_Cheat_Sheet.html

.
R
E
S
T
Cl
ie
nt
/
H
u
m
a
n
s
c
a
n
b
e
c
o
n
si
d
er
e
d
a
s
e
xt
er
n
al
u
s
er
s.

.
O
1
fe
at
ur
e
u
s
e
s
n
et
c
o
nf

.
R
I
C
-7
4
9
h
a
s
b
e
e
n
cr
e
at
e
d
fo
r
th
is

The security mechanisms within the software produced by the project MUST generate all cryptographic keys and nonces using
a cryptographically secure random number generator, and MUST NOT do so using generators that are cryptographically
insecure.

yes no TLS yet, but
once it comes
in Dawn we
need to assure
this.

Secured delivery against man-in-the-middle (MITM) attacks

The project MUST use a delivery mechanism that counters MITM attacks. Using https or ssh+scp is acceptable. yes

A cryptographic hash (e.g., a sha1sum) MUST NOT be retrieved over http and used without checking for a cryptographic
signature.

yes

Publicly known vulnerabilities fixed

 There MUST be no unpatched vulnerabilities of medium or higher severity that have been publicly []vulnerabilities_fixed_60_days

known for more than 60 days.
Yes the build

process uses
latest versions
of e.g. Ubuntu

G
o
v
er
n
a
n
c
e,
T
e
c
h
ni
c
al

2
0
2
1-
0
2-
17

L
F
N
s
u
p
p
or
te
d
to
ol
to
b
e
e
x
pl
or
e
d
fo
r
c
o
nt
ai
n
er
s
c
a
n
ni
ng

https://bestpractices.coreinfrastructure.org/en/criteria/0#0.vulnerabilities_fixed_60_days

JI
R
A
b
a
s
e
d
re
p
or
ti
n
g
fo
r
v
ul
n
er
a
bi
lit
ies

S
ta
ti
c
c
o
d
e
a
n
al
y
si
s
fo
r
u
s
a
g
e
of
ot
h
er
o
p
e
n
s
o
ur
c
e
m
o
d
ul
es

C
o
nt
ai
n
er
s
c
a
n
ni
ng

Projects SHOULD fix all critical vulnerabilities rapidly after they are reported. no (fix-priority
low)

G
o
v
er
n
a
n
ce

2
0
2
1-
0
2-
17

D
e
p
e
n
d
s
of
a
v
ai
la
bi
lit
y
of
re
p
or
t
fr
o
m
to
ol
s
(s
c
a
n
ni
n
g
&
JI
R
A)

W
e
m
a
y
n
ot
pi
c
k
a
s
of
n
ow

Other security issues

The public repositories MUST NOT leak a valid private credential (e.g., a working password or private key) that is intended to
limit public access.

yes 2021-02-17:
Not sure why
the criteria
earlier read 'A
project MAY
leak "sample"
credentials for
testing and
unimportant
databases, as
long as they
are not
intended to
limit public
access.'

G
o
v
er
n
a
n
ce

2
0
2
1-
0
2-
17

T
o
b
e
re
vi
si
ted

 Analysis (8 Points)
(Result/Proof point (column A: enter Met/Unmet; Column B: enter relevant URLs/comments)

near-RT RIC (end of Cherry)

Criteria Result / Proof point / Notes

Static code analysis

At least one static code analysis tool (beyond compiler warnings and "safe" language modes) MUST be applied to
any proposed major production release of the software before its release, if there is at least one FLOSS tool that
implements this criterion in the selected language.

yes Sonar

It is SUGGESTED that at least one of the static analysis tools used for the static_analysis criterion include rules or
t.approaches to look for common vulnerabilities in the analyzed language or environmen

parti
al
(fix-
priori
ty
medi
um)

TODO-check
container build
system

Governance

2021-02-17

. Fix all the
vulnerabilities from
Sonar scan report
. Sonar cloud has
extra category for
bugs that seem to
be security relevant

All medium and higher severity exploitable vulnerabilities discovered with static code analysis MUST be fixed in a
timely way after they are confirmed.

Yes Addressed by RC-5 Governance

2021-02-17
Fix all the
vulnerabilities from
Sonar scan report

It is SUGGESTED that static source code analysis occur on every commit or at least daily. parti
al
(fix-
priori
ty
high)

Technical

2021-02-17 Consider
components not
using Sonar

Dynamic code analysis

It is SUGGESTED that at least one dynamic analysis tool be applied to any proposed major production release of
the software before its release.

no code coverage tool

2021-02-17:
changed from no to
yes after better
understanding what
tools are meant.

It is SUGGESTED that if the software produced by the project includes software written using a memory-unsafe
language (e.g., C or C++), then at least one dynamic tool (e.g., a fuzzer or web application scanner) be routinely
used in combination with a mechanism to detect memory safety problems such as buffer overwrites. If the project
does not produce software written in a memory-unsafe language, choose "not applicable" (N/A).

no
(fix-
priori
ty
low)

Governance

2021-02-17

Not to be picked of
now

It is SUGGESTED that the software produced by the project include many run-time assertions that are checked
during dynamic analysis.

no
(fix-
priori
ty
low)

Governance

2021-02-17

Not to be picked as
of now

All medium and higher severity exploitable vulnerabilities discovered with dynamic code analysis MUST be fixed in
a timely way after they are confirmed.

N/A
(fix-
priori
ty
low)

Governance,
Technical

2021-02-17

Check with
LFN support
for any
dynamic code
analysis tool
(Keep Thoralf
in cc)
Potential
candidates are
O1 (ssh +
netconf)
Or A1 with http

	CII status: near-RT RIC

