
Configuring of logging in Kubernetes Cluster
Information Coordinator Service
There are two ways to configure logging.

Updating the application.yaml file, which requires a POD restart.
By invoking a REST API. The changes takes effect immediately, but the changes will not survive a POD restart.

The contents of the log can be read by command:

kubectl logs informationservice-0 --namespace nonrtric

Updating of the configuration file application.yaml

Debug logging can be configured by a file; application.yaml. This file can in turn be updated by means of a config map named informationservice-
.configmap

The contents of the config map can be retrieved by command:

kubectl describe configmap informationservice-configmap -n nonrtric

The following lines controls the logging levels (example of the default settings):

logging:
 level:
 ROOT: ERROR
 org.springframework: ERROR
 org.springframework.data: ERROR
 org.springframework.web.reactive.function.client.ExchangeFunctions: ERROR
 org.oransc.ics: INFO

If this file is put in a directory named config; ./config/application.yaml, the config map can be updated by command:

kubectl create configmap informationservice-configmap --from-file=./config --dry-run=client -n nonrtric -o yaml
| kubectl apply -f -

A POD restart is required for the change to take place.

Configuring logging using the REST API

Debug logging can also be configured by using REST. This does not require a POD restart. The configuration will on the other hand revert to the default
after a POD restart. Here follows an example on how to enable level tracing on the whole component (all classes in the package):debug org.oransc.ics

>curl http://172.17.0.7:8083/actuator/loggers/ -i -X POST -H 'Content-Type: application/json' -d '{"configuredLevel":" "}'org.oransc.ics debug

You can get the IP address and the port of the SERVICE by command:

kubectl get service -n nonrtric

Policy Management Service
There are two ways to configure logging.

Updating the application.yaml file, which requires a POD restart.
By invoking a REST API. The changes takes effect immediately, but the changes will not survive a POD restart.

The contents of the log can be read by command:

kubectl logs policymanagementservice-0 --namespace nonrtric

Updating of the configuration file application.yaml

Debug logging in the the PMS can be configured the same was as for the Enrichment Coordinator Service (described above). The difference is that the
name of the config map is .policymanagementservice-configmap-config

Configuring logging using the REST API

In the same was for the PMS, debug logging can also be configured by using REST. This does not require a POD restart. The traces will on the other hand
revert to the default after a POD restart. Here follows an example on how to enable level tracing on the whole component (all classes in the debug org.

package):onap.ccsdk.oran.a1policymanagementservice

>curl http://172.17.0.6:8081/actuator/loggers/ -i -X POST -H 'Content-Type: application/json' -d org.onap.ccsdk.oran.a1policymanagementservice
'{"configuredLevel":" "}'debug

You can get the IP address and the port of the POD by command:

kubectl describe pod policymanagementservice-0 -n nonrtric

DMaaP Adaptor Service
In the same was as the other springboot services, there are two ways to configure logging.

Updating the application.yaml file, which requires a POD restart.
By invoking a REST API. The changes takes effect immediately, but the changes will not survive a POD restart.

The contents of the log can be read by command:

kubectl logs dmaapadapterservice-0 --namespace nonrtric

Updating of the configuration file application.yaml

Debug logging in the the PMS can be configured the same was as for the Enrichment Coordinator Service (described above). The difference is that the
name of the config map is dmaapadapterservice .-configmap-config

Configuring logging using the REST API

In the same was for the PMS, debug logging can also be configured by using REST. This does not require a POD restart. The traces will on the other hand
revert to the default after a POD restart. Here follows an example on how to enable level tracing on the whole component (all classes in the debug org.

 package):oran.dmaapadapter

>curl -i -X POST -H 'Content-Type: application/json' -d '{"configuredLevel":" "}'http://172.17.0.6:8081/actuator/loggers/org.oran.dmaapadapter debug

You can get the IP address and the port of the POD by command:

kubectl describe pod dmaapadapterservice-0 -n nonrtric

http://172.17.0.6:8081/actuator/loggers/

	Configuring of logging in Kubernetes Cluster

